Skip to content

Commit

Permalink
Llama FSDP training with FP8
Browse files Browse the repository at this point in the history
  • Loading branch information
pbelevich committed May 15, 2024
1 parent 48c339f commit cb07958
Show file tree
Hide file tree
Showing 11 changed files with 1,587 additions and 0 deletions.
2 changes: 2 additions & 0 deletions 3.test_cases/XX.transformer-engine/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
checkpoints
slurm-*.out
227 changes: 227 additions & 0 deletions 3.test_cases/XX.transformer-engine/0.transformer-engine.dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,227 @@
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: MIT-0

FROM nvcr.io/nvidia/pytorch:24.04-py3
ENV DEBIAN_FRONTEND=noninteractive

# The three must-be-built packages.
# Efa-installer>=1.29.1 required for nccl>=2.19.0 to avoid libfabric NCCL error.
ENV EFA_INSTALLER_VERSION=1.30.0
ENV AWS_OFI_NCCL_VERSION=1.8.1-aws
ENV NCCL_TESTS_VERSION=master

## Uncomment below when this Dockerfile builds a container image with efa-installer<1.29.1 and
# nccl>=2.19.0. See https://github.com/aws-samples/awsome-distributed-training/tree/main/1.architectures/efa-cheatsheet.md
#ENV FI_EFA_SET_CUDA_SYNC_MEMOPS=0

RUN apt-get update -y
RUN apt-get remove -y --allow-change-held-packages \
libmlx5-1 ibverbs-utils libibverbs-dev libibverbs1

# We noticed that since 23.09, we can't just delete the whole /opt/hpcx/, otherwise `import torch`
# complains about missing libuc?.so.
RUN rm -rf /opt/hpcx/ompi \
&& rm -rf /usr/local/mpi \
&& rm -rf /opt/hpcx/nccl_rdma_sharp_plugin \
&& ldconfig
ENV OPAL_PREFIX=
RUN DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \
git \
gcc \
vim \
kmod \
openssh-client \
openssh-server \
build-essential \
curl \
autoconf \
libtool \
gdb \
automake \
cmake \
apt-utils \
libhwloc-dev \
aptitude && \
DEBIAN_FRONTEND=noninteractive apt autoremove -y

# EFA
RUN apt-get update && \
cd /tmp && \
curl -O https://efa-installer.amazonaws.com/aws-efa-installer-${EFA_INSTALLER_VERSION}.tar.gz && \
tar -xf aws-efa-installer-${EFA_INSTALLER_VERSION}.tar.gz && \
cd aws-efa-installer && \
# ONLY add `--skip-kmod`, `--no-verify` and `--skip-limit-conf` flags to container image.
# Those three flags must NOT be used on the host.
#
# Explanations:
# - to build EFA in the Dockerfile, we added --skip-kmod and --no-verify. Without these flags,
# the Dockerfile will fail to build. If installing EFA on the host and not in a container,
# please remove these flags.
# - The --skip-limit-conf can be retained in Dockerfile, but it's redundant as the host already
# has these limits set by efa_installer.
./efa_installer.sh -y -g -d --skip-kmod --no-verify --skip-limit-conf && \
ldconfig && \
rm -rf /tmp/aws-efa-installer /var/lib/apt/lists/*
ENV LD_LIBRARY_PATH=/opt/amazon/efa/lib:$LD_LIBRARY_PATH
ENV PATH=/opt/amazon/efa/bin:/opt/amazon/openmpi/bin:$PATH


####################################################################################################
# [CUSTOM_NCCL_OPTION_1] Uncomment below stanza to install another NCCL version using the official
# binaries.
#
# NCCL EFA plugin (aws-ofi-nccl) depends on mpi, hence we must rebuild openmpi before building the
# aws-ofi-ccnl.
####################################################################################################
#ENV NCCL_VERSION=2.19.3-1
#RUN cd /opt && \
# wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-keyring_1.0-1_all.deb && \
# dpkg -i cuda-keyring_1.0-1_all.deb && \
# apt update && \
# apt install -y libnccl2==${NCCL_VERSION} libnccl-dev==${NCCL_VERSION} && \
# echo NCCL_SOCKET_IFNAME=^docker0,lo >> /etc/nccl.conf


####################################################################################################
# [CUSTOM_NCCL_OPTION_2] Install NCCL from source to the same location as the built-in ones. The
# benefits of installing to the same location as the built-in version are:
#
# 1. There's only ever a single libnccl version offered by this image, preventing application from
# mistakenly chooses a wrong version.
# 2. No longer needing extra settings for LD_LIBRARY_PATH or LD_PRELOAD.
#
# NCCL EFA plugin (aws-ofi-nccl) depends on mpi, hence we must rebuild openmpi before building the
# aws-ofi-ccnl.
####################################################################################################
ENV NCCL_VERSION=2.19.3-1
RUN apt-get remove -y libnccl2 libnccl-dev \
&& cd /tmp \
&& git clone https://github.com/NVIDIA/nccl.git -b v${NCCL_VERSION} \
&& cd nccl \
&& make -j src.build BUILDDIR=/usr \
# Build for p4 & p5.
NVCC_GENCODE="-gencode=arch=compute_90,code=sm_90, -gencode=arch=compute_80,code=sm_80" \
&& rm -rf /tmp/nccl \
&& echo NCCL_SOCKET_IFNAME=^docker0,lo >> /etc/nccl.conf


####################################################################################################
# Rebuild OpenMPI with custom PMIX version. E.g., to match what host's Slurm is built with (see
# /opt/pmix/ on host, or run pmix_info on host).
#
# May be needed on rare occassions when `srun --mpi=pmix --container-image=... <mpi_application>`
# mysteriously crashes.
#
# NCCL EFA plugin (aws-ofi-nccl) depends on mpi, hence we must rebuild openmpi before building the
# aws-ofi-ccnl.
####################################################################################################
ENV OPEN_MPI_PATH=/opt/amazon/openmpi

# OpenMPI build script claims PMIX_VERSION, and complains if we use it.
ENV CUSTOM_PMIX_VERSION=4.2.6
RUN apt-get update && apt-get install -y libevent-dev \
&& cd /tmp \
&& wget https://github.com/openpmix/openpmix/releases/download/v${CUSTOM_PMIX_VERSION}/pmix-${CUSTOM_PMIX_VERSION}.tar.gz \
&& tar -xzf pmix-${CUSTOM_PMIX_VERSION}.tar.gz \
&& rm pmix-${CUSTOM_PMIX_VERSION}.tar.gz \
&& cd pmix-${CUSTOM_PMIX_VERSION}/ \
&& ./autogen.pl \
&& ./configure --prefix=/opt/pmix \
&& make -j \
&& make install \
&& echo /opt/pmix/lib > /etc/ld.so.conf.d/pmix.conf \
&& ldconfig \
&& cd / \
&& rm -fr /tmp/pmix-${CUSTOM_PMIX_VERSION}/
# To silence this runtime error message:
# [p4de-st-p4de-2:110912] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
ENV PMIX_GDS_MODULE=^ds12 \
PMIX_MCA_gds=^ds12

# Rebuild openmpi with DLC style (which it remarks as "without libfabric"), with the above pmix.
ENV OMPI_VERSION=4.1.6
RUN rm -fr ${OPEN_MPI_PATH} \
&& mkdir /tmp/openmpi \
&& cd /tmp/openmpi \
&& wget --quiet https://download.open-mpi.org/release/open-mpi/v4.1/openmpi-${OMPI_VERSION}.tar.gz \
&& tar zxf openmpi-${OMPI_VERSION}.tar.gz \
&& rm openmpi-${OMPI_VERSION}.tar.gz \
&& cd openmpi-${OMPI_VERSION} \
&& ./configure --enable-orterun-prefix-by-default --prefix=$OPEN_MPI_PATH --with-cuda=${CUDA_HOME} --with-slurm --with-pmix=/opt/pmix \
&& make -j $(nproc) all \
&& make install \
&& ldconfig \
&& cd / \
&& rm -rf /tmp/openmpi \
&& ompi_info --parsable --all | grep mpi_built_with_cuda_support:value \
# Verify pmix from /opt/pmix/
&& ldd /opt/amazon/openmpi/lib/openmpi/mca_pmix_ext3x.so | grep '/opt/pmix/lib/libpmix.so.* ' > /opt/amazon/openmpi-pmix.txt
####################################################################################################


# NCCL EFA Plugin
RUN mkdir -p /tmp && \
cd /tmp && \
curl -LO https://github.com/aws/aws-ofi-nccl/archive/refs/tags/v${AWS_OFI_NCCL_VERSION}.tar.gz && \
tar -xzf /tmp/v${AWS_OFI_NCCL_VERSION}.tar.gz && \
rm /tmp/v${AWS_OFI_NCCL_VERSION}.tar.gz && \
mv aws-ofi-nccl-${AWS_OFI_NCCL_VERSION} aws-ofi-nccl && \
cd /tmp/aws-ofi-nccl && \
./autogen.sh && \
./configure --prefix=/opt/amazon/efa \
--with-libfabric=/opt/amazon/efa \
--with-cuda=/usr/local/cuda \
--enable-platform-aws \
--with-mpi=/opt/amazon/openmpi && \
make -j$(nproc) install && \
rm -rf /tmp/aws-ofi/nccl

# Do this to minimize the ld path env vars that users need to define when running this image.
RUN echo "/usr/local/lib" >> /etc/ld.so.conf.d/local.conf && \
echo "/opt/amazon/openmpi/lib" >> /etc/ld.so.conf.d/efa.conf && \
ldconfig

ENV OMPI_MCA_pml=^cm,ucx \
OMPI_MCA_btl=tcp,self \
OMPI_MCA_btl_tcp_if_exclude=lo,docker0 \
OPAL_PREFIX=/opt/amazon/openmpi \
# https://discuss.pytorch.org/t/nccl-network-is-unreachable-connection-refused-when-initializing-ddp/137352
# https://github.com/pytorch/pytorch/issues/68893
NCCL_SOCKET_IFNAME=^docker,lo

ENV LD_LIBRARY_PATH="/usr/local/lib:/usr/local/cuda/lib64:${LD_LIBRARY_PATH}"

# NCCL-tests: always good to include this as a diagnostic tool.
RUN git clone https://github.com/NVIDIA/nccl-tests.git /opt/nccl-tests \
&& cd /opt/nccl-tests \
&& git checkout ${NCCL_TESTS_VERSION} \
&& make MPI=1 \
MPI_HOME=/opt/amazon/openmpi \
CUDA_HOME=/usr/local/cuda \
NVCC_GENCODE="-gencode=arch=compute_90,code=sm_90 -gencode=arch=compute_80,code=sm_80"


####################################################################################################
# Custom packages. Disable as you like. NOTE: always check `pip list` what's been installed. For
# example, the base container comes pre-installed with Transformer Engine, flash attention, triton
# (https://github.com/openai/triton/), etc.
####################################################################################################
# Install the xformers dependency from source, because pip install either breaks or try to pull
# its own pt + cuda.
#
# Pre-requisite: build node has enough memory to compile xformers. More info on the stanza.
RUN export TORCH_CUDA_ARCH_LIST="8.0;9.0+PTX" && \
# On p4de.24xlarge:
# - MAX_JOBS=16 => 145GB memory
# - MAX_JOBS=32 => 241GB memory
# - MAX_JOBS=48 => 243GB memory, 542.5s
#
# NOTE: must export MAX_JOBS. For some reason, `MAX_JOBS=16 pip install ...` doesn't seem to
# work to prevent OOM.
export MAX_JOBS=32 && \
export NVCC_PREPEND_FLAGS="-t 32" && \
pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers

RUN pip install transformers datasets

WORKDIR "/fsx"
95 changes: 95 additions & 0 deletions 3.test_cases/XX.transformer-engine/1.train_llama.sbatch
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
#!/bin/bash

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: MIT-0

#SBATCH --nodes=2 # number of nodes to use
#SBATCH --job-name=LlamaFP8 # name of your job
#SBATCH --exclusive # job has exclusive use of the resource, no sharing

set -ex;

###########################
###### User Variables #####
###########################

GPUS_PER_NODE=8 # 4 for G5.12x, 8 for P4/P5

###########################
## Environment Variables ##
###########################

## Plenty of EFA level variables
## Comment out for non-efa instances (G4d, P3)
## For G5.12x, Comment out RDMA and Fork safe
## For G4dn and other G5, comment out all
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4d
export FI_EFA_FORK_SAFE=1
export FI_LOG_LEVEL=1
export FI_PROVIDER=efa
export NCCL_DEBUG=INFO
## Switching SYNC_MEMOPS to zero can boost throughput with FSDP
## Disables CU_POINTER_ATTRIBUTE_SYNC_MEMOPS
## Reduces memory synchronizations
## https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__UNIFIED.html
export FI_EFA_SET_CUDA_SYNC_MEMOPS=0

# default variables for Enroot
: "${IMAGE:=$(pwd)/transformer-engine.sqsh}"
: "${DATA_PATH:=/fsx}"
: "${FSX_MOUNT:=$(pwd):$DATA_PATH}"

declare -a ARGS=(
--container-image $IMAGE
--container-mounts $FSX_MOUNT
)

###########################
####### Torch Dist #######
###########################

declare -a TORCHRUN_ARGS=(
--nproc_per_node=$GPUS_PER_NODE
--nnodes=$SLURM_JOB_NUM_NODES
--rdzv_id=$SLURM_JOB_ID
--rdzv_backend=c10d
--rdzv_endpoint=$(hostname)
)

export TORCHRUN=torchrun
export TRAIN_SCRIPT=./train.py

############################
# Llama 2 Training Params ##
############################

declare -a TRAINING_ARGS=(
--max_context_width=4096
--num_key_value_heads=32 # 7b: 32 13b: 40 70b: 8
--intermediate_size=11008 # 7b: 11008 13b: 13824 70b: 28672
--hidden_width=4096 # 7b: 4096 13b: 5120 70b: 8192
--num_layers=32 # 7b: 32 13b: 40 70b: 80
--num_heads=32 # 7b: 32 13b: 40 70b: 64
--model_type=llama_v2
--tokenizer="hf-internal-testing/llama-tokenizer"
--checkpoint_freq=5000
--validation_freq=100
--max_steps=5000
--checkpoint_dir=./checkpoints
--dataset='c4'
--dataset_config_name='en'
--resume_from_checkpoint=./checkpoints
--train_batch_size=1
--val_batch_size=1
--sharding_strategy="full" # https://pytorch.org/docs/stable/fsdp.html
--offload_activations=1
--fp8=1
)

AUTO_RESUME=""
if [ -d "/opt/sagemaker_cluster" ]; then
echo "Detected Hyperpod cluster.. enabling --auto-resume=1"
AUTO_RESUME="--auto-resume=1"
fi

srun ${AUTO_RESUME} -l "${ARGS[@]}" torchrun "${TORCHRUN_ARGS[@]}" $TRAIN_SCRIPT "${TRAINING_ARGS[@]}"
Loading

0 comments on commit cb07958

Please sign in to comment.