Skip to content

Commit

Permalink
Deploying to gh-pages from @ b5ca376 🚀
Browse files Browse the repository at this point in the history
  • Loading branch information
awxlong committed Nov 2, 2023
1 parent 517ac8e commit a0600f0
Show file tree
Hide file tree
Showing 13 changed files with 72 additions and 53 deletions.
20 changes: 9 additions & 11 deletions assets/bibliography/deep-med.bib
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ @book{wang_2020_blockchain
@article{carvalho_2020_selfregulated,
author = {Carvalho, Paulo F. and Sana, Faria and Yan, Veronica X.},
month = {03},
pages = {17},
pages = {1-7},
title = {Self-regulated spacing in a massive open online course is related to better learning},
doi = {10.1038/s41539-020-0061-1},
url = {https://www.nature.com/articles/s41539-020-0061-1},
Expand Down Expand Up @@ -138,7 +138,7 @@ @book{clark_2010_naturalborn
@article{clark_1998_the,
author = {Clark, Andy and Chalmers, David},
pages = {719},
pages = {7-19},
title = {The Extended Mind},
url = {https://www.jstor.org/stable/3328150},
volume = {58},
Expand Down Expand Up @@ -214,7 +214,7 @@ @article{savage_2020_the
journal = {Nature}
}
@article{songchun_2017_qiantan,
@article{songzhuchun_2017_qiantan,
author = {Song-Chun , Zhu},
month = {11},
title = {Qiantan rengongzhineng: xianzhuang, renwu, goujia yu tongyi [AI: The Era of Big Integration Unifying Disciplines within Artificial Intelligence]},
Expand Down Expand Up @@ -243,7 +243,7 @@ @misc{wilson_2011_embodied
@proceedings{liu_2023_characteraware,
author = {Liu, Rosanne and Garrette, Dan and Chitwan Saharia and Chan, William and Roberts, Adam and Narang, Sharan and Blok, Irina and Mical, Rj and Norouzi, Mohammad and Constant, Noah},
month = {01},
pages = {1627016297},
pages = {16270-16297},
publisher = { Association for Computational Linguistics},
title = {Character-Aware Models Improve Visual Text Rendering},
doi = {10.18653/v1/2023.acl-long.900},
Expand Down Expand Up @@ -281,7 +281,7 @@ @article{zhu_2020_dark
@misc{deutsch_2012_how,
author = {Deutsch, David },
month = {10},
title = {How close are we to creating artificial intelligence? David Deutsch | Aeon Essays},
title = {How close are we to creating artificial intelligence? - David Deutsch | Aeon Essays},
url = {https://aeon.co/essays/how-close-are-we-to-creating-artificial-intelligence},
year = {2012},
organization = {Aeon}
Expand All @@ -306,10 +306,10 @@ @article{takagi_2022_highresolution
}
@article{dsa_2023_prediction,
author = {DSa, Karishma and Evans, James R. and Virdi, Gurvir S. and Vecchi, Giulia and Adam, Alexander and Bertolli, Ottavia and Fleming, James and Chang, Hojong and Leighton, Craig and Horrocks, Mathew H. and Athauda, Dilan and Choi, Minee L. and Gandhi, Sonia},
author = {D'Sa, Karishma and Evans, James R. and Virdi, Gurvir S. and Vecchi, Giulia and Adam, Alexander and Bertolli, Ottavia and Fleming, James and Chang, Hojong and Leighton, Craig and Horrocks, Mathew H. and Athauda, Dilan and Choi, Minee L. and Gandhi, Sonia},
month = {08},
pages = {933946},
title = {Prediction of mechanistic subtypes of Parkinsons using patient-derived stem cell models},
pages = {933-946},
title = {Prediction of mechanistic subtypes of Parkinson's using patient-derived stem cell models},
doi = {10.1038/s42256-023-00702-9},
url = {https://www.nature.com/articles/s42256-023-00702-9},
volume = {5},
Expand All @@ -322,19 +322,17 @@ @article{li_2023_v1t
month = {05},
title = {V1T: large-scale mouse V1 response prediction using a Vision Transformer},
url = {https://openreview.net/forum?id=qHZs2p4ZD4},
urldate = {2023-11-02},
year = {2023},
journal = {Transactions on Machine Learning Research}
}
@article{koh_2020_concept,
author = {Koh, Pang Wei and Nguyen, Thao and Tang, Yew Siang and Mussmann, Stephen and Pierson, Emma and Kim, Been and Liang, Percy},
month = {11},
pages = {53385348},
pages = {5338-5348},
publisher = {PMLR},
title = {Concept Bottleneck Models},
url = {https://proceedings.mlr.press/v119/koh20a.html},
urldate = {2023-11-02},
volume = {119},
year = {2020},
journal = {Proceedings of Machine Learning Research}
Expand Down
2 changes: 1 addition & 1 deletion assets/jupyter/blog.ipynb.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion assets/jupyter/narrow_heuristic.ipynb.html

Large diffs are not rendered by default.

23 changes: 22 additions & 1 deletion blog/2021/kaifu-toc/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion blog/2023/index.html

Large diffs are not rendered by default.

32 changes: 32 additions & 0 deletions blog/2023/mechanistic-subtypes-parkinson-copy/index.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <title>Review of the paper Prediction of mechanistic subtypes of Parkinson's using patient derived stem cell models | Xuelong An Wang</title> <meta name="author" content="Xuelong An Wang"> <meta name="description" content="comments on a paper that leverages deep learning to classify cells into Parkinson's subtypes"> <meta name="keywords" content="jekyll, jekyll-theme, academic-website, portfolio-website"> <link href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha256-DF7Zhf293AJxJNTmh5zhoYYIMs2oXitRfBjY+9L//AY=" crossorigin="anonymous"> <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/mdbootstrap@4.20.0/css/mdb.min.css" integrity="sha256-jpjYvU3G3N6nrrBwXJoVEYI/0zw8htfFnhT9ljN3JJw=" crossorigin="anonymous"> <link defer rel="stylesheet" href="https://unpkg.com/bootstrap-table@1.21.4/dist/bootstrap-table.min.css"> <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@fortawesome/fontawesome-free@6.4.0/css/all.min.css" integrity="sha256-HtsXJanqjKTc8vVQjO4YMhiqFoXkfBsjBWcX91T1jr8=" crossorigin="anonymous"> <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/academicons@1.9.1/css/academicons.min.css" integrity="sha256-i1+4qU2G2860dGGIOJscdC30s9beBXjFfzjWLjBRsBg=" crossorigin="anonymous"> <link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Roboto:300,400,500,700|Roboto+Slab:100,300,400,500,700|Material+Icons"> <link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jwarby/jekyll-pygments-themes@master/github.css" media="" id="highlight_theme_light"> <link rel="shortcut icon" href="/assets/img/brain-fractal-3.jpg"> <link rel="stylesheet" href="/assets/css/main.css?d41d8cd98f00b204e9800998ecf8427e"> <link rel="canonical" href="https://awxlong.github.io/blog/2023/mechanistic-subtypes-parkinson-copy/"> <link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jwarby/jekyll-pygments-themes@master/native.css" media="none" id="highlight_theme_dark"> <script src="/assets/js/theme.js?96d6b3e1c3604aca8b6134c7afdd5db6"></script> <script src="/assets/js/dark_mode.js?9b17307bb950ffa2e34be0227f53558f"></script> <script src="https://cdn.jsdelivr.net/npm/jquery@3.6.0/dist/jquery.min.js" integrity="sha256-/xUj+3OJU5yExlq6GSYGSHk7tPXikynS7ogEvDej/m4=" crossorigin="anonymous"></script> <script type="text/javascript">window.MathJax={tex:{tags:"ams"}};</script> <script defer type="text/javascript" id="MathJax-script" src="https://cdn.jsdelivr.net/npm/mathjax@3.2.0/es5/tex-mml-chtml.js"></script> <script defer src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script> <script src="/assets/js/distillpub/template.v2.js"></script> <script src="/assets/js/distillpub/transforms.v2.js"></script> <script src="/assets/js/distillpub/overrides.js"></script> </head> <body> <d-front-matter> <script async type="text/json">{
"title": "Review of the paper Prediction of mechanistic subtypes of Parkinson's using patient derived stem cell models",
"description": "comments on a paper that leverages deep learning to classify cells into Parkinson's subtypes",
"published": "November 2, 2023",
"authors": [
{
"author": "Xuelong An",
"authorURL": "",
"affiliations": [
{
"name": "",
"url": ""
}
]
}

],
"katex": {
"delimiters": [
{
"left": "$",
"right": "$",
"display": false
},
{
"left": "$$",
"right": "$$",
"display": true
}
]
}
}</script> </d-front-matter> <header> <nav id="navbar" class="navbar navbar-light navbar-expand-sm fixed-top"> <div class="container"> <a class="navbar-brand title font-weight-lighter" href="/"><span class="font-weight-bold">Xuelong </span>An Wang</a> <button class="navbar-toggler collapsed ml-auto" type="button" data-toggle="collapse" data-target="#navbarNav" aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar top-bar"></span> <span class="icon-bar middle-bar"></span> <span class="icon-bar bottom-bar"></span> </button> <div class="collapse navbar-collapse text-right" id="navbarNav"> <ul class="navbar-nav ml-auto flex-nowrap"> <li class="nav-item "> <a class="nav-link" href="/">about</a> </li> <li class="nav-item active"> <a class="nav-link" href="/blog/">blog<span class="sr-only">(current)</span></a> </li> <li class="nav-item "> <a class="nav-link" href="/publications/">research</a> </li> <li class="nav-item "> <a class="nav-link" href="/projects/">projects</a> </li> <li class="nav-item "> <a class="nav-link" href="/cv/">cv</a> </li> <li class="toggle-container"> <button id="light-toggle" title="Change theme"> <i class="fas fa-moon"></i> <i class="fas fa-sun"></i> </button> </li> </ul> </div> </div> </nav> <progress id="progress" value="0"> <div class="progress-container"> <span class="progress-bar"></span> </div> </progress> </header> <div class="post distill"> <d-title> <h1>Review of the paper Prediction of mechanistic subtypes of Parkinson's using patient derived stem cell models</h1> <p>comments on a paper that leverages deep learning to classify cells into Parkinson's subtypes</p> </d-title> <d-byline></d-byline> <d-article> <d-contents> <nav class="l-text figcaption"> <h3>Contents</h3> <div><a href="#brief-summary">Brief summary</a></div> <div><a href="#my-comments-and-future-research-directions">My comments and future research directions</a></div> </nav> </d-contents> <h1 id="brief-summary">Brief summary</h1> <p>The paper by <d-cite key="dsa_2023_prediction"></d-cite> leverages deep learning architectures to solve a pentanary classification task given either a cell’s tabular features or images. The five independent classes are one healthy control and four subtypes of Parkinson’s Disease: familial proteinopathy (SNCA), environmental proteinopathy (\(\alpha\)-Syn oligomer), and two subtypes characterized by different mitochondria dysfunction pathways. These pathologies were chemically induced on stem cells. Fifty-six phenotypical features of them were extracted automatically and recorded as tabular data, along with images of the cells extracted via microscopy. Both data modalities were labeled with one of the five classes.</p> <p>The research team trained separately a dense feedforward neural network (DNN) to classify on the tabular data, as well as a convolutional neural network (CNN) to classify on image data. The test classification accuracy achieved by the DNN reached around 83%, while the CNN 95%.</p> <figure> <img src="/assets/img/parkinson.png" alt="Sorry. Image couldn't load." width="100%" height="auto"> <figcaption id="bottleneck">Two separate models are trained on different datasets on the same task of Parkinson subtype classification. Figure extracted from the original research article at https://www.nature.com/articles/s42256-023-00702-9</figcaption> </figure> <h1 id="my-comments-and-future-research-directions">My comments and future research directions</h1> <p>Generally, in the deep learning literature, it is acknowledged that the usage of DNNs comes at the expense of poor explainability. Despite achieving high classification accuracy, these models are black-boxes. Nonetheless, there are ways to identify what are the features that the neural networks pay the most attention when deciding on a classification label, mainly by looking at its last layer’s activation and tracing back to the input space which input feature is associated to it. In CNNs, the technique employed by the research team is called the ShAP (SHapley Additive exPlanations) method.</p> <p>The authors managed to identify in both the DNN and CNN that the mitochondria, lysosome and the interaction of both features mainly contributed to the classification decisions of both models.</p> <p>One future research direction I am interested is exploring whether by integrating both data sources can improve performance and yield explainability, because the original work trains separate models, trained on different datasets.</p> <p>One source of inspiration is from <d-cite key="li_2023_v1t"></d-cite>, where they integrate image data along with a mouse’s behavioral features to predict its neural responses collected from neural recordings. Another source of inspiration is drawn from concept-bottleneck models <d-cite key="koh_2020_concept"></d-cite>. There, a CNN in charge of processing images doesn’t learn to output a classification label, but instead to output features that are relevant to the image. These features, in turn, are annotations of the image stored in tabular:</p> <figure> <img src="/assets/img/bottleneck.png" alt="Sorry. Image couldn't load." width="100%" height="auto"> <figcaption id="bottleneck">A depiction of the pipeline of a concept-bottleneck model. The first half outputs a set of concepts given an image, which can be learnt from intricate annotations, or metadata, of the image. The second half outputs a classification label. Figure extracted from the original paper </figcaption> </figure> <p>Altogether, with regards to the work by <d-cite key="dsa_2023_prediction"></d-cite>, one interesting extension to their CNN is to have it not predict a Parkinson subtype, but rather learn to predict the cell’s physiological features stored as tabular data given image input. Subsequently, use the features to train a multi-class regressor using standard softmax to output a classification label. The prospect is that this hybrid model can leverage the high accuracy prediction of the CNN, whilst being explainable thanks to the logistic regressor.</p> <p>As a further improvement, we can use a <a href="https://arxiv.org/abs/2210.11394" rel="external nofollow noopener" target="_blank">Slot Transformer</a> instead of the CNN with the hope of learning a disentangled representation given the image with its annotations. However, the architecture will be more computationally expensive. A pretrained Slot Transformer that already learnt to disentangle CLEVR-Scenes may be more powerful than training it from scratch.</p> </d-article> <d-appendix> <d-footnote-list></d-footnote-list> <d-citation-list></d-citation-list> </d-appendix> <d-bibliography src="/assets/bibliography/deep-med.bib"></d-bibliography><div id="disqus_thread" style="max-width: 800px; margin: 0 auto;"> <script type="text/javascript">var disqus_shortname="al-folio",disqus_identifier="/blog/2023/mechanistic-subtypes-parkinson-copy",disqus_title="Review of the paper Prediction of mechanistic subtypes of Parkinson's using patient derived stem cell models";!function(){var e=document.createElement("script");e.type="text/javascript",e.async=!0,e.src="//"+disqus_shortname+".disqus.com/embed.js",(document.getElementsByTagName("head")[0]||document.getElementsByTagName("body")[0]).appendChild(e)}();</script> <noscript>Please enable JavaScript to view the <a href="http://disqus.com/?ref_noscript" rel="external nofollow noopener" target="_blank">comments powered by Disqus.</a> </noscript> </div> </div> <footer class="fixed-bottom"> <div class="container mt-0"> © Copyright 2023 Xuelong An Wang. Powered by <a href="https://jekyllrb.com/" target="_blank" rel="external nofollow noopener">Jekyll</a> with <a href="https://github.com/alshedivat/al-folio" rel="external nofollow noopener" target="_blank">al-folio</a> theme. Hosted by <a href="https://pages.github.com/" target="_blank" rel="external nofollow noopener">GitHub Pages</a>. Photos from <a href="https://unsplash.com" target="_blank" rel="external nofollow noopener">Unsplash</a>. </div> </footer> <script src="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/js/bootstrap.bundle.min.js" integrity="sha256-fgLAgv7fyCGopR/gBNq2iW3ZKIdqIcyshnUULC4vex8=" crossorigin="anonymous"></script> <script src="https://cdn.jsdelivr.net/npm/mdbootstrap@4.20.0/js/mdb.min.js" integrity="sha256-NdbiivsvWt7VYCt6hYNT3h/th9vSTL4EDWeGs5SN3DA=" crossorigin="anonymous"></script> <script type="text/javascript">function progressBarSetup(){"max"in document.createElement("progress")?(initializeProgressElement(),$(document).on("scroll",function(){progressBar.attr({value:getCurrentScrollPosition()})}),$(window).on("resize",initializeProgressElement)):(resizeProgressBar(),$(document).on("scroll",resizeProgressBar),$(window).on("resize",resizeProgressBar))}function getCurrentScrollPosition(){return $(window).scrollTop()}function initializeProgressElement(){let e=$("#navbar").outerHeight(!0);$("body").css({"padding-top":e}),$("progress-container").css({"padding-top":e}),progressBar.css({top:e}),progressBar.attr({max:getDistanceToScroll(),value:getCurrentScrollPosition()})}function getDistanceToScroll(){return $(document).height()-$(window).height()}function resizeProgressBar(){progressBar.css({width:getWidthPercentage()+"%"})}function getWidthPercentage(){return getCurrentScrollPosition()/getDistanceToScroll()*100}const progressBar=$("#progress");window.onload=function(){setTimeout(progressBarSetup,50)};</script> </body> </html>
Loading

0 comments on commit a0600f0

Please sign in to comment.