forked from felixbur/nkululeko
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'felixbur:main' into master
- Loading branch information
Showing
2 changed files
with
369 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
import dataclasses | ||
import typing | ||
|
||
import torch | ||
import transformers | ||
from transformers.models.wav2vec2.modeling_wav2vec2 import ( | ||
Wav2Vec2PreTrainedModel, | ||
Wav2Vec2Model, | ||
) | ||
|
||
|
||
class ConcordanceCorCoeff(torch.nn.Module): | ||
|
||
def __init__(self): | ||
|
||
super().__init__() | ||
|
||
self.mean = torch.mean | ||
self.var = torch.var | ||
self.sum = torch.sum | ||
self.sqrt = torch.sqrt | ||
self.std = torch.std | ||
|
||
def forward(self, prediction, ground_truth): | ||
|
||
mean_gt = self.mean(ground_truth, 0) | ||
mean_pred = self.mean(prediction, 0) | ||
var_gt = self.var(ground_truth, 0) | ||
var_pred = self.var(prediction, 0) | ||
v_pred = prediction - mean_pred | ||
v_gt = ground_truth - mean_gt | ||
cor = self.sum(v_pred * v_gt) / ( | ||
self.sqrt(self.sum(v_pred**2)) * self.sqrt(self.sum(v_gt**2)) | ||
) | ||
sd_gt = self.std(ground_truth) | ||
sd_pred = self.std(prediction) | ||
numerator = 2 * cor * sd_gt * sd_pred | ||
denominator = var_gt + var_pred + (mean_gt - mean_pred) ** 2 | ||
ccc = numerator / denominator | ||
|
||
return 1 - ccc | ||
|
||
|
||
@dataclasses.dataclass | ||
class ModelOutput(transformers.file_utils.ModelOutput): | ||
|
||
logits_cat: torch.FloatTensor = None | ||
hidden_states: typing.Tuple[torch.FloatTensor] = None | ||
cnn_features: torch.FloatTensor = None | ||
|
||
|
||
class ModelHead(torch.nn.Module): | ||
|
||
def __init__(self, config, num_labels): | ||
|
||
super().__init__() | ||
|
||
self.dense = torch.nn.Linear(config.hidden_size, config.hidden_size) | ||
self.dropout = torch.nn.Dropout(config.final_dropout) | ||
self.out_proj = torch.nn.Linear(config.hidden_size, num_labels) | ||
|
||
def forward(self, features, **kwargs): | ||
|
||
x = features | ||
x = self.dropout(x) | ||
x = self.dense(x) | ||
x = torch.tanh(x) | ||
x = self.dropout(x) | ||
x = self.out_proj(x) | ||
|
||
return x | ||
|
||
|
||
class Model(Wav2Vec2PreTrainedModel): | ||
|
||
def __init__(self, config): | ||
|
||
super().__init__(config) | ||
|
||
self.wav2vec2 = Wav2Vec2Model(config) | ||
self.cat = ModelHead(config, 2) | ||
self.init_weights() | ||
|
||
def freeze_feature_extractor(self): | ||
self.wav2vec2.feature_extractor._freeze_parameters() | ||
|
||
def pooling( | ||
self, | ||
hidden_states, | ||
attention_mask, | ||
): | ||
|
||
if attention_mask is None: # For evaluation with batch_size==1 | ||
outputs = torch.mean(hidden_states, dim=1) | ||
else: | ||
attention_mask = self._get_feature_vector_attention_mask( | ||
hidden_states.shape[1], | ||
attention_mask, | ||
) | ||
hidden_states = hidden_states * torch.reshape( | ||
attention_mask, | ||
(-1, attention_mask.shape[-1], 1), | ||
) | ||
outputs = torch.sum(hidden_states, dim=1) | ||
attention_sum = torch.sum(attention_mask, dim=1) | ||
outputs = outputs / torch.reshape(attention_sum, (-1, 1)) | ||
|
||
return outputs | ||
|
||
def forward( | ||
self, | ||
input_values, | ||
attention_mask=None, | ||
labels=None, | ||
return_hidden=False, | ||
): | ||
|
||
outputs = self.wav2vec2( | ||
input_values, | ||
attention_mask=attention_mask, | ||
) | ||
|
||
cnn_features = outputs.extract_features | ||
hidden_states_framewise = outputs.last_hidden_state | ||
hidden_states = self.pooling( | ||
hidden_states_framewise, | ||
attention_mask, | ||
) | ||
logits_cat = self.cat(hidden_states) | ||
|
||
if not self.training: | ||
logits_cat = torch.softmax(logits_cat, dim=1) | ||
|
||
if return_hidden: | ||
|
||
# make time last axis | ||
cnn_features = torch.transpose(cnn_features, 1, 2) | ||
|
||
return ModelOutput( | ||
logits_cat=logits_cat, | ||
hidden_states=hidden_states, | ||
cnn_features=cnn_features, | ||
) | ||
|
||
else: | ||
|
||
return ModelOutput( | ||
logits_cat=logits_cat, | ||
) | ||
|
||
|
||
class ModelWithPreProcessing(Model): | ||
|
||
def __init__(self, config): | ||
super().__init__(config) | ||
|
||
def forward( | ||
self, | ||
input_values, | ||
): | ||
# Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm(): | ||
# normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) | ||
|
||
mean = input_values.mean() | ||
|
||
# var = input_values.var() | ||
# raises: onnxruntime.capi.onnxruntime_pybind11_state.NotImplemented: [ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for the node ReduceProd_3:ReduceProd(11) | ||
|
||
var = torch.square(input_values - mean).mean() | ||
input_values = (input_values - mean) / torch.sqrt(var + 1e-7) | ||
|
||
output = super().forward( | ||
input_values, | ||
return_hidden=True, | ||
) | ||
|
||
return ( | ||
output.hidden_states, | ||
output.logits_cat, | ||
output.cnn_features, | ||
) |
Oops, something went wrong.