Skip to content

barahona-research-group/ICE-NODE

Repository files navigation

Note: If you are referred from ICE-NODE paper, please follow the relevant instructions on the following snapshot of the codebase: MLHC 2022 version.

Roadmap

  • Pipeline validators.
  • Integrate consort diagramming in the pipeline.
  • Work with the pytable library directly instead of the pandas library.
  • Implement packed representations for the tvx_ehr to improve the compressibility of the data.
  • Implement a scheme manager object to handle schemes and codemaps, instead of using global variables.
  • lib.ehr.tvx* test.
  • lib.ehr.coding_scheme.CodeMap test.
  • lib.ehr.* documentation / document edge cases tested.
  • lib.ehr custom exceptions / adapt tests.
  • FHIR resources adaptation.
  • Support for SNOMED-CT.
  • CLI for running pipelines.
  • GUI for configuring the dataset and the tvx_ehr.
    • Pipeline 10 + 10 steps.
    • Selection of dataset CodingScheme space.
Coverage
Branch Coverage
main main_cov_ehr
dev dev_cov_ehr

Citation

To cite this work, please use the following BibTex entry:

@article{Alaa2022ICENODEIO,
  title={ICE-NODE: Integration of Clinical Embeddings with Neural Ordinary Differential Equations},
  author={Asem Alaa and Erik Mayer and Mauricio Barahona},
  journal={ArXiv},
  year={2022},
  volume={abs/2207.01873}
}

About

Integration of Clinical Embeddings with Neural ODEs

Resources

License

Stars

Watchers

Forks