Note: If you are referred from ICE-NODE paper, please follow the relevant instructions on the following snapshot of the codebase: MLHC 2022 version.
- Pipeline validators.
- Integrate consort diagramming in the pipeline.
- Work with the pytable library directly instead of the pandas library.
- Implement packed representations for the tvx_ehr to improve the compressibility of the data.
- Implement a scheme manager object to handle schemes and codemaps, instead of using global variables.
-
lib.ehr.tvx*
test. -
lib.ehr.coding_scheme.CodeMap
test. -
lib.ehr.*
documentation / document edge cases tested. -
lib.ehr
custom exceptions / adapt tests. - FHIR resources adaptation.
- Support for SNOMED-CT.
- CLI for running pipelines.
- GUI for configuring the dataset and the tvx_ehr.
- Pipeline 10 + 10 steps.
- Selection of dataset CodingScheme space.
Branch | Coverage |
---|---|
main | |
dev |
To cite this work, please use the following BibTex entry:
@article{Alaa2022ICENODEIO,
title={ICE-NODE: Integration of Clinical Embeddings with Neural Ordinary Differential Equations},
author={Asem Alaa and Erik Mayer and Mauricio Barahona},
journal={ArXiv},
year={2022},
volume={abs/2207.01873}
}