Skip to content

Contains the code and data for reproducing the results of the paper "Validation and Comparison of Non-Stationary Cognitive Models: A Diffusion Model Application".

License

Notifications You must be signed in to change notification settings

bayesflow-org/Non-Stationary-DDM-Validation

Repository files navigation

Validation of a Non-Stationary Cognitive Models

Superstatistics are emerging as a flexible framework for incorporating non-stationary dynamics into existing cognitive model classes. In this work, we provide the first experimental validation of superstatistics and formal comparison of four non-stationary diffusion decision models in a specifically designed perceptual decision-making task. This repository contains the data and code for running the experiments and reproducing all results reported in our paper Validation and Comparison of Non-Stationary Cognitive Models: A Diffusion Model Application.

The code depends on the BayesFlow library, which implements the neural network architectures and training utilities.

Cite

@article{schumacher2024,
  title = {Validation and Comparison of Non-stationary Cognitive Models: A Diffusion Model Application},
  author = {Schumacher, Lukas and Schnuerch, Martin and Voss, Andreas and Radev, Stefan T.},
  year = {2024},
  journal = {Computational Brain \& Behavior},
  doi = {10.1007/s42113-024-00218-4}
}

All applications are structured as runable python scripts or jupyter notebooks, which are detailed below.

Inference

  • Model evaluation: Visualization of inferred parameter trajectory and aggregated posterior re-simulation results.
  • Response time series: Posterior re-simulation and prediction of response time series.

Model comparison

Support

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; grant number GRK 2277 ”Statistical Modeling in Psychology”)

License

MIT

About

Contains the code and data for reproducing the results of the paper "Validation and Comparison of Non-Stationary Cognitive Models: A Diffusion Model Application".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published