Skip to content

Commit

Permalink
Update coderabbitai.cpp
Browse files Browse the repository at this point in the history
Signed-off-by: J. K. Edwards <joed6834@colorado.edu>
  • Loading branch information
bearycool11 authored Jan 12, 2025
1 parent 638d7b2 commit 7c4cf1b
Showing 1 changed file with 128 additions and 12 deletions.
140 changes: 128 additions & 12 deletions .engine/coderabbitai.cpp
Original file line number Diff line number Diff line change
@@ -1,3 +1,7 @@
#include "coderabbitai/core.h"
#include "coderabbitai/neural_net.h"
#include "coderabbitai/memory.h"
#include "coderabbitai/error.h"
#include <chrono>
#include <random>
#include <cmath>
Expand All @@ -11,18 +15,130 @@
#include <algorithm>
#include <exception>
#include <stdexcept>
#include <thread>
#include <future>
#include <memory>
#include <vector>
#include <string>
#include <chrono>
#include <random>
#include <cmath>
#include <algorithm>
#include <exception>
#include "codingrabbitaibrain.h"
#include <stdexcept>

// Initialize logging
void init_logging() {
spdlog::set_pattern("[%Y-%m-%d %H:%M:%S.%e] [%^%l%$] [%s:%#] %v");
spdlog::set_level(spdlog::level::debug);
}

// Neural Network Implementation
void init_neural_network(NeuralNetwork& nn) {
LOG_INFO("Initializing neural network");
try {
auto rand_double = [](std::mt19937& gen) {
std::uniform_real_distribution<> dis(-1.0, 1.0);
return dis(gen);
};

std::random_device rd;
std::mt19937 gen(rd());

nn.weights = std::vector<std::vector<double>>(NN_HIDDEN_SIZE, std::vector<double>(NN_INPUT_SIZE));
nn.bias = std::vector<double>(NN_HIDDEN_SIZE);
nn.output_weights = std::vector<std::vector<double>>(NN_OUTPUT_SIZE, std::vector<double>(NN_HIDDEN_SIZE));
nn.output_bias = std::vector<double>(NN_OUTPUT_SIZE);

for (auto& layer : nn.weights) {
std::generate(layer.begin(), layer.end(), [&]() { return rand_double(gen); });
}
std::generate(nn.bias.begin(), nn.bias.end(), [&]() { return rand_double(gen); });

LOG_INFO("Neural network initialized successfully");
} catch (const std::exception& e) {
LOG_ERROR("Neural network initialization failed: {}", e.what());
throw std::runtime_error("Neural network initialization failed");
}
}

// Code Pattern Management
std::unique_ptr<CodePattern> create_code_pattern(const std::string& snippet, const std::string& language, double complexity) {
if (snippet.empty() || language.empty()) {
LOG_ERROR("Invalid code pattern parameters: snippet or language is empty");
throw std::invalid_argument("Snippet or language cannot be empty");
}

try {
auto pattern = std::make_unique<CodePattern>();
pattern->snippet = snippet;
pattern->language = language;
pattern->complexity = complexity;

LOG_INFO("Created code pattern: language={}, complexity={}", language, complexity);
return pattern;
} catch (const std::exception& e) {
LOG_ERROR("Failed to create code pattern: {}", e.what());
throw;
}
}

void add_pattern_to_memory(CodeMemory& memory, std::unique_ptr<CodePattern>&& pattern) {
try {
if (memory.patterns.size() >= CODE_PATTERN_LIMIT) {
LOG_INFO("Memory limit reached, removing oldest pattern");
memory.patterns.erase(memory.patterns.begin());
}
memory.patterns.push_back(std::move(pattern));
LOG_INFO("Pattern added to memory, total patterns: {}", memory.patterns.size());
} catch (const std::exception& e) {
LOG_ERROR("Failed to add pattern to memory: {}", e.what());
throw;
}
}

// Main processing functions
void process_code_request(CodeWorkbench& workbench, CodeMemory& memory, EmotionalGraph& eg) {
if (workbench.code_request.empty()) {
LOG_ERROR("Empty code request");
throw std::runtime_error("No code request provided");
}

try {
// Use async for parallel processing
auto pattern_match = std::async(std::launch::async, [&]() {
LOG_INFO("Starting pattern matching");
// Pattern matching logic
});

auto analysis = std::async(std::launch::async, [&]() {
LOG_INFO("Starting code analysis");
// Analysis logic
});

pattern_match.get();
analysis.get();

LOG_INFO("Code request processed successfully");
} catch (const std::exception& e) {
LOG_ERROR("Failed to process code request: {}", e.what());
ErrorRecovery::recover_from_neural_network_failure(workbench.nn);
throw;
}
}

// Main entry point
int main() {
try {
init_logging();
LOG_INFO("Starting CodeRabbitAI");

CodeMemory memory;
EmotionalGraph eg;
CodeWorkbench workbench{"Create a function to sort an array"};

NeuralNetwork nn;
init_neural_network(nn);

process_code_request(workbench, memory, eg);

LOG_INFO("CodeRabbitAI completed successfully");
return 0;
} catch (const std::exception& e) {
LOG_ERROR("Fatal error: {}", e.what());
return 1;
}
}


// Constants using constexpr
constexpr int CODE_PATTERN_LIMIT = 10000;
Expand Down

0 comments on commit 7c4cf1b

Please sign in to comment.