Skip to content

Commit

Permalink
Update coderabbitai.cpp
Browse files Browse the repository at this point in the history
@coderabbitai create a docstring to combine, refactor and enhance this in your own PR .

Signed-off-by: J. K. Edwards <joed6834@colorado.edu>
  • Loading branch information
bearycool11 authored Jan 12, 2025
1 parent 82944c5 commit 7cd8cf6
Showing 1 changed file with 374 additions and 0 deletions.
374 changes: 374 additions & 0 deletions .engine/coderabbitai.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -440,3 +440,377 @@ double evaluate_code_style(const char *code) {
// Placeholder for actual style evaluation
return 0.75;
}

#include "codingrabbitaibrain.h"
#include <iostream>
#include <memory>
#include <vector>
#include <string>
#include <chrono>
#include <random>
#include <cmath>
#include <algorithm>
#include <exception>

// Constants using constexpr
constexpr int CODE_PATTERN_LIMIT = 10000;
constexpr double CODE_COMPLEXITY_FACTOR = 1.0;
constexpr double LTM_THRESHOLD = 0.5;
constexpr int NN_INPUT_SIZE = 1000;
constexpr int NN_HIDDEN_SIZE = 500;
constexpr int NN_OUTPUT_SIZE = 10;

// Memory hierarchy structures with modern C++ constructs
struct CacheEntry {
std::vector<char> data;
size_t size;
uint64_t timestamp;
};

struct STM_Cache {
std::vector<CacheEntry> entries;
size_t capacity;
size_t used;
};

struct SerializedTopic {
std::vector<char> data;
size_t size;
std::string topic_id;
};

struct LTM_Gradient {
double relevance;
double permanence;
};

struct LTM_JudgeNode {
LTM_Gradient true_gradient;
LTM_Gradient false_gradient;
};

struct CodePattern {
std::string snippet;
std::string language;
double complexity;
};

struct CodeMemory {
std::vector<std::unique_ptr<CodePattern>> patterns;
};

struct CodeWorkbench {
std::string code_request;
std::string current_code;
std::string suggested_code;
};

struct EmotionalNode {
std::string emotion;
double intensity;
double reward_value;
};

struct EmotionalGraph {
std::vector<EmotionalNode> nodes;
};

struct NeuralNetwork {
std::vector<std::vector<double>> weights;
std::vector<double> bias;
std::vector<std::vector<double>> output_weights;
std::vector<double> output_bias;
};

// Helper functions for time and ID generation
uint64_t get_current_timestamp() {
using namespace std::chrono;
return duration_cast<milliseconds>(system_clock::now().time_since_epoch()).count();
}

std::string generate_unique_id() {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dis(0, 15);
std::uniform_int_distribution<> dis2(8, 11);

std::stringstream ss;
ss << std::hex;
for (int i = 0; i < 8; i++) {
ss << dis(gen);
}
ss << "-";
for (int i = 0; i < 3; i++) {
ss << dis2(gen) << dis(gen);
}
ss << "-";
for (int i = 0; i < 12; i++) {
ss << dis(gen);
}
return ss.str();
}

// Core Function Implementations

STM_Cache init_stm_cache(size_t capacity) {
return {std::vector<CacheEntry>(capacity), capacity, 0};
}

SerializedTopic serialize_novel_topic(const std::string& topic_data) {
SerializedTopic serialized;
serialized.data.assign(topic_data.begin(), topic_data.end());
serialized.size = topic_data.size();
serialized.topic_id = generate_unique_id();
return serialized;
}

std::unique_ptr<CodePattern> create_code_pattern(const std::string& snippet, const std::string& language, double complexity) {
return std::make_unique<CodePattern>(CodePattern{snippet, language, complexity});
}

void add_pattern_to_memory(CodeMemory& memory, std::unique_ptr<CodePattern>&& pattern) {
if (memory.patterns.size() == CODE_PATTERN_LIMIT) {
memory.patterns.erase(memory.patterns.begin()); // Remove oldest pattern
}
memory.patterns.push_back(std::move(pattern));
}

void analyze_code_complexity(CodePattern& pattern) {
pattern.complexity += CODE_COMPLEXITY_FACTOR;
}

void update_code_suggestion(CodeWorkbench& workbench, const std::string& new_suggestion) {
workbench.suggested_code = new_suggestion;
}

// Logic Loop Implementations

void pmll_logic_loop(CodeWorkbench& workbench, const CodeMemory& memory) {
for (const auto& pattern : memory.patterns) {
if (pattern->snippet.find(workbench.code_request) != std::string::npos) {
std::cout << "Pattern matched: " << pattern->snippet << "\n";
break; // Match only one pattern for simplicity
}
}
}

void arll_logic_loop(CodeWorkbench& workbench) {
if (!workbench.suggested_code.empty()) {
std::cout << "Analyzing code structure...\n";
// Placeholder for actual analysis
}
}

void efll_logic_loop(CodeWorkbench& workbench) {
if (!workbench.suggested_code.empty()) {
double style_score = evaluate_code_style(workbench.suggested_code.c_str()); // Placeholder
std::cout << "Code style score: " << style_score << "\n";
}
}

void judge_and_consolidate(LTM_JudgeNode& judge_node, const SerializedTopic& topic) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<> dis(0.0, 1.0);

double relevance = dis(gen);
double permanence = dis(gen);

if (relevance > LTM_THRESHOLD) {
judge_node.true_gradient.relevance = relevance;
judge_node.true_gradient.permanence = permanence;
std::cout << "Consolidating topic into LTM with relevance " << relevance << " and permanence " << permanence << "\n";
} else {
judge_node.false_gradient.relevance = relevance;
judge_node.false_gradient.permanence = permanence;
std::cout << "Rejecting topic for LTM with relevance " << relevance << "\n";
}
}

// Neural Network Initialization
void init_neural_network(NeuralNetwork& nn) {
auto rand_double = [](std::mt19937& gen) {
std::uniform_real_distribution<> dis(-1.0, 1.0);
return dis(gen);
};

std::random_device rd;
std::mt19937 gen(rd());

nn.weights = std::vector<std::vector<double>>(NN_HIDDEN_SIZE, std::vector<double>(NN_INPUT_SIZE, 0.0));
nn.bias = std::vector<double>(NN_HIDDEN_SIZE, 0.0);
nn.output_weights = std::vector<std::vector<double>>(NN_OUTPUT_SIZE, std::vector<double>(NN_HIDDEN_SIZE, 0.0));
nn.output_bias = std::vector<double>(NN_OUTPUT_SIZE, 0.0);

for (auto& layer : nn.weights) {
std::generate(layer.begin(), layer.end(), [&]() { return rand_double(gen); });
}
std::generate(nn.bias.begin(), nn.bias.end(), [&]() { return rand_double(gen); });

for (auto& layer : nn.output_weights) {
std::generate(layer.begin(), layer.end(), [&]() { return rand_double(gen); });
}
std::generate(nn.output_bias.begin(), nn.output_bias.end(), [&]() { return rand_double(gen); });
}

double evaluate_code_with_nn(const NeuralNetwork& nn, const std::string& code) {
std::vector<double> input(NN_INPUT_SIZE, 0.0);
for (size_t i = 0; i < std::min(NN_INPUT_SIZE, code.size()); ++i) {
input[i] = static_cast<double>(code[i]) / 255.0;
}

std::vector<double> hidden(NN_HIDDEN_SIZE);
for (int h = 0; h < NN_HIDDEN_SIZE; ++h) {
hidden[h] = nn.bias[h];
for (int i = 0; i < NN_INPUT_SIZE; ++i) {
hidden[h] += input[i] * nn.weights[h][i];
}
hidden[h] = 1.0 / (1.0 + std::exp(-hidden[h])); // Sigmoid activation
}

std::vector<double> output(NN_OUTPUT_SIZE);
for (int o = 0; o < NN_OUTPUT_SIZE; ++o) {
output[o] = nn.output_bias[o];
for (int h = 0; h < NN_HIDDEN_SIZE; ++h) {
output[o] += hidden[h] * nn.output_weights[o][h];
}
output[o] = 1.0 / (1.0 + std::exp(-output[o])); // Sigmoid for output
}

return std::accumulate(output.begin(), output.end(), 0.0) / NN_OUTPUT_SIZE;
}

// Emotional Graph Functions
void add_emotional_node(EmotionalGraph& eg, const std::string& emotion, double intensity, double reward_value) {
eg.nodes.emplace_back(emotion, intensity, reward_value);
}

void reward_good_practice(EmotionalGraph& eg, const std::string& code, const std::string& documentation) {
NeuralNetwork nn; // Placeholder for actual NN initialization
init_neural_network(nn);
double code_quality = evaluate_code_with_nn(nn, code);
double doc_quality = evaluate_code_with_nn(nn, documentation);

if (code_quality > 0.7) {
add_emotional_node(eg, "Satisfaction", 0.8, 1.0);
} else if (code_quality > 0.5) {
add_emotional_node(eg, "Content", 0.5, 0.5);
} else {
add_emotional_node(eg, "Frustration", 0.6, -0.5);
}

if (doc_quality > 0.7) {
add_emotional_node(eg, "Pride", 0.7, 1.0);
} else if (doc_quality > 0.3) {
add_emotional_node(eg, "Neutral", 0.3, 0);
} else {
add_emotional_node(eg, "Disappointment", 0.6, -0.5);
}

std::cout << "Emotional response to code and documentation:\n";
for (const auto& node : eg.nodes) {
std::cout << "- " << node.emotion << ": Intensity " << node.intensity << ", Reward " << node.reward_value << "\n";
}
}

// AI Processing Functions

void process_code_request(CodeWorkbench& workbench, CodeMemory& memory, EmotionalGraph& eg) {
if (workbench.code_request.empty()) {
throw std::runtime_error("No code request provided.");
}

try {
pmll_logic_loop(workbench, memory);
arll_logic_loop(workbench);
efll_logic_loop(workbench);
generate_code_suggestion(workbench, memory);
reward_good_practice(eg, workbench.suggested_code, workbench.code_request);
} catch (const std::exception& e) {
std::cerr << "Error during code request processing: " << e.what() << "\n";
}
}

void refine_code_suggestion(CodeWorkbench& workbench, CodeMemory& memory, STM_Cache& stm_cache, LTM_JudgeNode& judge_node) {
if (workbench.suggested_code.empty()) return;

SerializedTopic serialized = serialize_novel_topic(workbench.suggested_code);
if (stm_cache.used < stm_cache.capacity) {
stm_cache.entries[stm_cache.used++] = {serialized.data,

serialized.size, get_current_timestamp()};
} else {
for (auto& entry : stm_cache.entries) {
SerializedTopic topic = {entry.data, entry.size, ""}; // Reconstruct serialized topic
judge_and_consolidate(judge_node, topic);
}
stm_cache.used = 0; // Reset STM cache after evaluation
}

try {
std::string refined = "Refined code suggestion:\n" + workbench.suggested_code;
update_code_suggestion(workbench, refined);
} catch (const std::exception& e) {
std::cerr << "Error refining code suggestion: " << e.what() << "\n";
}
}

// Main Orchestration

void orchestrate_coding_session(CodeWorkbench& workbench, CodeMemory& memory, EmotionalGraph& eg) {
if (workbench.code_request.empty()) {
throw std::runtime_error("No code request to process.");
}

std::cout << "Starting coding session for request: " << workbench.code_request << "\n";

try {
process_code_request(workbench, memory, eg);
std::cout << "Initial suggestion:\n" << workbench.suggested_code << "\n";

static STM_Cache stm_cache = init_stm_cache(1024);
static LTM_JudgeNode judge_node;

refine_code_suggestion(workbench, memory, stm_cache, judge_node);
std::cout << "Refined suggestion:\n" << workbench.suggested_code << "\n";

commit_code_to_blockchain(workbench.suggested_code.c_str(), "Final Suggestion");
std::cout << "Coding session completed.\n";
} catch (const std::exception& e) {
std::cerr << "Error in coding session: " << e.what() << "\n";
}
}

// Main function with error handling
int main() {
try {
CodeMemory memory;
EmotionalGraph eg;
CodeWorkbench workbench{"Create a function to sort an array"};

NeuralNetwork nn;
init_neural_network(nn);

orchestrate_coding_session(workbench, memory, eg);
} catch (const std::exception& e) {
std::cerr << "An error occurred: " << e.what() << "\n";
return 1;
}
return 0;
}

// Placeholder functions for undefined methods

void generate_code_suggestion(CodeWorkbench& workbench, const CodeMemory& memory) {
workbench.suggested_code = "/* Generated code suggestion */\n"
"// This could be based on patterns in memory.";
}

void commit_code_to_blockchain(const char* code, const char* description) {
std::cout << "Committing code to blockchain: " << description << "\n";
}

double evaluate_code_style(const char* code) {
// Placeholder for actual style evaluation
return 0.75;
}

0 comments on commit 7cd8cf6

Please sign in to comment.