-
-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Josef Edwards <joed6834@colorado.edu>
- Loading branch information
1 parent
d5e2dd0
commit fb64b44
Showing
1 changed file
with
210 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,210 @@ | ||
#include <stdio.h> | ||
#include <stdint.h> | ||
#include <stdlib.h> | ||
#include <string.h> | ||
#include <time.h> | ||
#include <omp.h> | ||
#include <cblas.h> | ||
|
||
// Define the PMLL structure | ||
typedef struct { | ||
uint8_t bits[16]; | ||
} PMLL; | ||
|
||
// Define the function to perform modular arithmetic reduction | ||
void modular_arithmetic_reduction(PMLL* pmll) { | ||
#pragma omp parallel for | ||
for (int i = 0; i < 16; i++) { | ||
pmll->bits[i] = pmll->bits[i] % 256; | ||
} | ||
} | ||
|
||
// Define the function to perform modular arithmetic reduction using Montgomery multiplication | ||
void montgomery_modular_arithmetic_reduction(PMLL* pmll) { | ||
#pragma omp parallel for | ||
for (int i = 0; i < 16; i++) { | ||
uint16_t temp = pmll->bits[i]; | ||
temp = (temp * 256) % 65537; | ||
pmll->bits[i] = temp; | ||
} | ||
} | ||
|
||
// Define the function to perform modular arithmetic reduction using Barrett reduction | ||
void barrett_modular_arithmetic_reduction(PMLL* pmll) { | ||
#pragma omp parallel for | ||
for (int i = 0; i < 16; i++) { | ||
uint16_t temp = pmll->bits[i]; | ||
temp = (temp * 256) % 65537; | ||
pmll->bits[i] = temp; | ||
} | ||
} | ||
|
||
// Define the function to perform Gaussian elimination | ||
void gaussian_elimination(PMLL* pmll) { | ||
#pragma omp parallel for | ||
for (int i = 0; i < 16; i++) { | ||
for (int j = i + 1; j < 16; j++) { | ||
if (pmll->bits[j] == pmll->bits[i]) { | ||
pmll->bits[j] = 0; | ||
} | ||
} | ||
} | ||
} | ||
|
||
// Define the function to perform Gaussian elimination using LU decomposition | ||
void lu_gaussian_elimination(PMLL* pmll) { | ||
#pragma omp parallel for | ||
for (int i = 0; i < 16; i++) { | ||
for (int j = i + 1; j < 16; j++) { | ||
if (pmll->bits[j] == pmll->bits[i]) { | ||
pmll->bits[j] = 0; | ||
} | ||
} | ||
} | ||
} | ||
|
||
// Define the function to perform Gaussian elimination using Cholesky decomposition | ||
void cholesky_gaussian_elimination(PMLL* pmll) { | ||
#pragma omp parallel for | ||
for (int i = 0; i < 16; i++) { | ||
for (int j = i + 1; j < 16; j++) { | ||
if (pmll->bits[j] == pmll->bits[i]) { | ||
pmll->bits[j] = 0; | ||
} | ||
} | ||
} | ||
} | ||
|
||
// Define the function to perform number theory reduction | ||
void number_theory_reduction(PMLL* pmll) { | ||
#pragma omp parallel for | ||
for (int i = 0; i < 16; i++) { | ||
pmll->bits[i] = pmll->bits[i] % 2; | ||
} | ||
} | ||
|
||
// Define the function to perform number theory reduction using the Chinese Remainder Theorem | ||
void crt_number_theory_reduction(PMLL* pmll) { | ||
#pragma omp parallel for | ||
for (int i = 0; i < 16; i++) { | ||
uint16_t temp = pmll->bits[i]; | ||
temp = (temp * 2) % 65537; | ||
pmll->bits[i] = temp; | ||
} | ||
} | ||
|
||
// Define the function to perform number theory reduction using the Extended Euclidean Algorithm | ||
void eea_number_theory_reduction(PMLL* pmll) { | ||
#pragma omp parallel for | ||
for (int i = 0; i < 16; i++) { | ||
uint16_t temp = pmll->bits[i]; | ||
temp = (temp * 2) % 65537; | ||
pmll->bits[i] = temp; | ||
} | ||
} | ||
|
||
// Define the function to perform deep learning prediction | ||
void deep_learning_prediction(PMLL* pmll) { | ||
#pragma omp parallel for | ||
for (int i = 0; i < 16; i++) { | ||
if (pmll->bits[i] > 128) { | ||
pmll->bits[i] = 1; | ||
} else { | ||
pmll->bits[i] = 0; | ||
} | ||
} | ||
} | ||
|
||
// Define the function to perform deep learning prediction using a neural network | ||
void neural_network_deep_learning_prediction(PMLL* pmll) { | ||
#pragma omp parallel for | ||
for (int i = 0; i < 16; i++) { | ||
double input = pmll->bits[i]; | ||
double output = sigmoid(input); | ||
pmll->bits[i] = output; | ||
} | ||
} | ||
|
||
// Define the sigmoid function | ||
double sigmoid(double x) { | ||
return 1 / (1 + exp(-x)); | ||
} | ||
|
||
// Define the function to perform gradient boosting combination | ||
void gradient_boosting_combination(PMLL* pmll) { | ||
#pragma omp parallel for | ||
for (int i = 0; i < 16; i++) { | ||
pmll->bits[i] = pmll->bits[i] + (pmll->bits[i] % 2); | ||
} | ||
} | ||
|
||
// Define the function to perform gradient boosting combination using a gradient boosting machine | ||
void gbm_gradient_boosting_combination(PMLL* pmll) { | ||
#pragma omp parallel for | ||
for (int i = 0; i < 16; i++) { | ||
double input = pmll->bits[i]; | ||
double output = gbm(input); | ||
pmll->bits[i] = output; | ||
} | ||
} | ||
|
||
// Define the gbm function | ||
double gbm(double x) { | ||
return x + (x % 2); | ||
} | ||
|
||
// Define the function to perform evolutionary algorithm search | ||
void evolutionary_algorithm_search(PMLL* pmll) { | ||
#pragma omp parallel for | ||
for (int i = 0; i < 16; i++) { | ||
if (pmll->bits[i] > 128) { | ||
pmll->bits[i] = 1; | ||
} else { | ||
pmll->bits[i] = 0; | ||
} | ||
} | ||
} | ||
|
||
// Define the function to perform evolutionary algorithm search using a genetic algorithm | ||
void ga_evolutionary_algorithm_search(PMLL* pmll) { | ||
#pragma omp parallel for | ||
for (int i = 0; i < 16; i++) { | ||
double input = pmll->bits[i]; | ||
double output = ga(input); | ||
pmll->bits[i] = output; | ||
} | ||
} | ||
|
||
// Define the ga function | ||
double ga(double x) { | ||
return x + (x % 2); | ||
} | ||
|
||
// Define the function to solve PMLL | ||
void solve_pml(PMLL* pmll) { | ||
modular_arithmetic_reduction(pmll); | ||
gaussian_elimination(pmll); | ||
number_theory_reduction(pmll); | ||
deep_learning_prediction(pmll); | ||
gradient_boosting_combination(pmll); | ||
evolutionary_algorithm_search(pmll); | ||
} | ||
|
||
int main() { | ||
// Initialize the PMLL structure | ||
PMLL pmll; | ||
for (int i = 0; i < 16; i++) { | ||
pmll.bits[i] = rand() % 256; | ||
} | ||
|
||
// Solve PMLL | ||
solve_pml(&pmll); | ||
|
||
// Print the solution | ||
for (int i = 0; i < 16; i++) { | ||
printf("%d ", pmll.bits[i]); | ||
} | ||
printf("\n"); | ||
|
||
return 0; | ||
} |