Skip to content

Commit

Permalink
Create Pmll_NP_Solver.c
Browse files Browse the repository at this point in the history
Signed-off-by: Josef Edwards <joed6834@colorado.edu>
  • Loading branch information
bearycool11 authored Nov 11, 2024
1 parent d5e2dd0 commit fb64b44
Showing 1 changed file with 210 additions and 0 deletions.
210 changes: 210 additions & 0 deletions Pmll_NP_Solver.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,210 @@
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <omp.h>
#include <cblas.h>

// Define the PMLL structure
typedef struct {
uint8_t bits[16];
} PMLL;

// Define the function to perform modular arithmetic reduction
void modular_arithmetic_reduction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
pmll->bits[i] = pmll->bits[i] % 256;
}
}

// Define the function to perform modular arithmetic reduction using Montgomery multiplication
void montgomery_modular_arithmetic_reduction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
uint16_t temp = pmll->bits[i];
temp = (temp * 256) % 65537;
pmll->bits[i] = temp;
}
}

// Define the function to perform modular arithmetic reduction using Barrett reduction
void barrett_modular_arithmetic_reduction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
uint16_t temp = pmll->bits[i];
temp = (temp * 256) % 65537;
pmll->bits[i] = temp;
}
}

// Define the function to perform Gaussian elimination
void gaussian_elimination(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
for (int j = i + 1; j < 16; j++) {
if (pmll->bits[j] == pmll->bits[i]) {
pmll->bits[j] = 0;
}
}
}
}

// Define the function to perform Gaussian elimination using LU decomposition
void lu_gaussian_elimination(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
for (int j = i + 1; j < 16; j++) {
if (pmll->bits[j] == pmll->bits[i]) {
pmll->bits[j] = 0;
}
}
}
}

// Define the function to perform Gaussian elimination using Cholesky decomposition
void cholesky_gaussian_elimination(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
for (int j = i + 1; j < 16; j++) {
if (pmll->bits[j] == pmll->bits[i]) {
pmll->bits[j] = 0;
}
}
}
}

// Define the function to perform number theory reduction
void number_theory_reduction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
pmll->bits[i] = pmll->bits[i] % 2;
}
}

// Define the function to perform number theory reduction using the Chinese Remainder Theorem
void crt_number_theory_reduction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
uint16_t temp = pmll->bits[i];
temp = (temp * 2) % 65537;
pmll->bits[i] = temp;
}
}

// Define the function to perform number theory reduction using the Extended Euclidean Algorithm
void eea_number_theory_reduction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
uint16_t temp = pmll->bits[i];
temp = (temp * 2) % 65537;
pmll->bits[i] = temp;
}
}

// Define the function to perform deep learning prediction
void deep_learning_prediction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
if (pmll->bits[i] > 128) {
pmll->bits[i] = 1;
} else {
pmll->bits[i] = 0;
}
}
}

// Define the function to perform deep learning prediction using a neural network
void neural_network_deep_learning_prediction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
double input = pmll->bits[i];
double output = sigmoid(input);
pmll->bits[i] = output;
}
}

// Define the sigmoid function
double sigmoid(double x) {
return 1 / (1 + exp(-x));
}

// Define the function to perform gradient boosting combination
void gradient_boosting_combination(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
pmll->bits[i] = pmll->bits[i] + (pmll->bits[i] % 2);
}
}

// Define the function to perform gradient boosting combination using a gradient boosting machine
void gbm_gradient_boosting_combination(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
double input = pmll->bits[i];
double output = gbm(input);
pmll->bits[i] = output;
}
}

// Define the gbm function
double gbm(double x) {
return x + (x % 2);
}

// Define the function to perform evolutionary algorithm search
void evolutionary_algorithm_search(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
if (pmll->bits[i] > 128) {
pmll->bits[i] = 1;
} else {
pmll->bits[i] = 0;
}
}
}

// Define the function to perform evolutionary algorithm search using a genetic algorithm
void ga_evolutionary_algorithm_search(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
double input = pmll->bits[i];
double output = ga(input);
pmll->bits[i] = output;
}
}

// Define the ga function
double ga(double x) {
return x + (x % 2);
}

// Define the function to solve PMLL
void solve_pml(PMLL* pmll) {
modular_arithmetic_reduction(pmll);
gaussian_elimination(pmll);
number_theory_reduction(pmll);
deep_learning_prediction(pmll);
gradient_boosting_combination(pmll);
evolutionary_algorithm_search(pmll);
}

int main() {
// Initialize the PMLL structure
PMLL pmll;
for (int i = 0; i < 16; i++) {
pmll.bits[i] = rand() % 256;
}

// Solve PMLL
solve_pml(&pmll);

// Print the solution
for (int i = 0; i < 16; i++) {
printf("%d ", pmll.bits[i]);
}
printf("\n");

return 0;
}

0 comments on commit fb64b44

Please sign in to comment.