Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use styler::style_pkg() #111

Merged
merged 1 commit into from
Feb 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 26 additions & 25 deletions R/em_link.R
Original file line number Diff line number Diff line change
Expand Up @@ -35,40 +35,41 @@
#'
#' @examples
#'
#' inv_logit <- function (x) {
#' exp(x)/(1+exp(x))
#'}
#'n <- 10^6
#'d <- 1:n %% 5 == 0
#'X <- cbind(
#' as.integer(ifelse(d, runif(n)<.8, runif(n)<.2)),
#' as.integer(ifelse(d, runif(n)<.9, runif(n)<.2)),
#' as.integer(ifelse(d, runif(n)<.7, runif(n)<.2)),
#' as.integer(ifelse(d, runif(n)<.6, runif(n)<.2)),
#' as.integer(ifelse(d, runif(n)<.5, runif(n)<.2)),
#' as.integer(ifelse(d, runif(n)<.1, runif(n)<.9)),
#' as.integer(ifelse(d, runif(n)<.1, runif(n)<.9)),
#' as.integer(ifelse(d, runif(n)<.8, runif(n)<.01))
#' )
#' inv_logit <- function(x) {
#' exp(x) / (1 + exp(x))
#' }
#' n <- 10^6
#' d <- 1:n %% 5 == 0
#' X <- cbind(
#' as.integer(ifelse(d, runif(n) < .8, runif(n) < .2)),
#' as.integer(ifelse(d, runif(n) < .9, runif(n) < .2)),
#' as.integer(ifelse(d, runif(n) < .7, runif(n) < .2)),
#' as.integer(ifelse(d, runif(n) < .6, runif(n) < .2)),
#' as.integer(ifelse(d, runif(n) < .5, runif(n) < .2)),
#' as.integer(ifelse(d, runif(n) < .1, runif(n) < .9)),
#' as.integer(ifelse(d, runif(n) < .1, runif(n) < .9)),
#' as.integer(ifelse(d, runif(n) < .8, runif(n) < .01))
#' )
#'
#' # inital guess at class assignments based on # a hypothetical logistic
#' # regression. Should be based on domain knowledge, or a handful of hand-coded
#' # observations.
#'
#'x_sum <- rowSums(X)
#'g <- inv_logit((x_sum - mean(x_sum))/sd(x_sum))
#' x_sum <- rowSums(X)
#' g <- inv_logit((x_sum - mean(x_sum)) / sd(x_sum))
#'
#' out <- em_link(X, g,tol=.0001, max_iter = 100)
#' out <- em_link(X, g, tol = .0001, max_iter = 100)
#'
#' @export
em_link <- function (X,g, tol = 10^-6, max_iter = 10^3) {
em_link <- function(X, g, tol = 10^-6, max_iter = 10^3) {
stopifnot(
"There can be no NA's in X (but you can add NA as its own agreement level)" = !any(is.na(X))
)

stopifnot("There can be no NA's in X (but you can add NA as its own agreement level)"
= !any(is.na(X)))
stopifnot(
"initial guesses must be valid probabilities (greater than 0 and less than 1)" = all(g < 1 & g > 0)
)

stopifnot("initial guesses must be valid probabilities (greater than 0 and less than 1)"
= all(g < 1 & g > 0))


rust_em_link(X,g, tol, max_iter)
rust_em_link(X, g, tol, max_iter)
}
157 changes: 79 additions & 78 deletions R/euclidean_join_core.R
Original file line number Diff line number Diff line change
@@ -1,95 +1,96 @@
multi_by_validate <- function(a,b, by) {
# first pass to handle dplyr::join_by() call
if (inherits(by, "dplyr_join_by")) {
if (any(by$condition != "==")) {
stop("Inequality joins are not supported.")
}
new_by <- by$y
names(new_by) <- by$x
by <- new_by
multi_by_validate <- function(a, b, by) {
# first pass to handle dplyr::join_by() call
if (inherits(by, "dplyr_join_by")) {
if (any(by$condition != "==")) {
stop("Inequality joins are not supported.")
}
new_by <- by$y
names(new_by) <- by$x
by <- new_by
}

if (is.null(by)) {
by_a <- intersect(names(a), names(b))
by_b <- intersect(names(a), names(b))
if (is.null(by)) {
by_a <- intersect(names(a), names(b))
by_b <- intersect(names(a), names(b))
} else {
if (!is.null(names(by))) {
by_a <- names(by)
by_b <- by
} else {
if (!is.null(names(by))) {
by_a <- names(by)
by_b <- by
} else {
by_a <- by
by_b <- by
}

stopifnot(by_a %in% names(a))
stopifnot(by_b %in% names(b))
by_a <- by
by_b <- by
}
return(list(
by_a,
by_b
))
}

#` @importFrom stats pnorm
euclidean_join_core <- function (a, b, by = NULL, n_bands = 30, band_width = 10, threshold=1.0, r=.5, progress = FALSE, mode="inner") {

stopifnot("'radius' must be greater than 0" = threshold > 0)

by <- multi_by_validate(a,b,by)
by_a <- by[[1]]
by_b <- by[[2]]
stopifnot("There should be no NA's in by_a[1]"=!any(is.na(dplyr::pull(a,by_a[1]))))
stopifnot("There should be no NA's in by_a[2]"=!any(is.na(dplyr::pull(a,by_a[2]))))
stopifnot("There should be no NA's in by_b[1]"=!any(is.na(dplyr::pull(b,by_b[1]))))
stopifnot("There should be no NA's in by_b[2]"=!any(is.na(dplyr::pull(b,by_b[2]))))
stopifnot(by_a %in% names(a))
stopifnot(by_b %in% names(b))
}
return(list(
by_a,
by_b
))
}

thresh_prob <- euclidean_probability(threshold, n_bands, band_width, r)
if (thresh_prob < .95) {
str <- paste0("A pair of records at the threshold (", threshold,
") have only a ", round(thresh_prob*100), "% chance of being compared.\n",
"Please consider changing `n_bands` and `band_width`, and `r`.")
# ` @importFrom stats pnorm
euclidean_join_core <- function(a, b, by = NULL, n_bands = 30, band_width = 10, threshold = 1.0, r = .5, progress = FALSE, mode = "inner") {
stopifnot("'radius' must be greater than 0" = threshold > 0)

warning(str)
}
by <- multi_by_validate(a, b, by)
by_a <- by[[1]]
by_b <- by[[2]]
stopifnot("There should be no NA's in by_a[1]" = !any(is.na(dplyr::pull(a, by_a[1]))))
stopifnot("There should be no NA's in by_a[2]" = !any(is.na(dplyr::pull(a, by_a[2]))))
stopifnot("There should be no NA's in by_b[1]" = !any(is.na(dplyr::pull(b, by_b[1]))))
stopifnot("There should be no NA's in by_b[2]" = !any(is.na(dplyr::pull(b, by_b[2]))))

match_table <- rust_p_norm_join(
a_mat = as.matrix(dplyr::select(a, dplyr::all_of(by_a))),
b_mat = as.matrix(dplyr::select(b, dplyr::all_of(by_b))),
radius = threshold,
band_width = band_width,
n_bands = n_bands,
r = r,
progress = progress,
seed = round(runif(1,0,2^32))
thresh_prob <- euclidean_probability(threshold, n_bands, band_width, r)
if (thresh_prob < .95) {
str <- paste0(
"A pair of records at the threshold (", threshold,
") have only a ", round(thresh_prob * 100), "% chance of being compared.\n",
"Please consider changing `n_bands` and `band_width`, and `r`."
)

names_in_both <- intersect(names(a), names(b))
warning(str)
}

names(a)[names(a) %in% names_in_both] <-
paste0(names(a)[names(a) %in% names_in_both], ".x")
names(b)[names(b) %in% names_in_both] <-
paste0(names(b)[names(b) %in% names_in_both], ".y")
match_table <- rust_p_norm_join(
a_mat = as.matrix(dplyr::select(a, dplyr::all_of(by_a))),
b_mat = as.matrix(dplyr::select(b, dplyr::all_of(by_b))),
radius = threshold,
band_width = band_width,
n_bands = n_bands,
r = r,
progress = progress,
seed = round(runif(1, 0, 2^32))
)

matches <- dplyr::bind_cols(a[match_table[, 1], ], b[match_table[, 2], ])
names_in_both <- intersect(names(a), names(b))

# No need to look for rows that don't match
if (mode == "inner") {
return(matches)
}
names(a)[names(a) %in% names_in_both] <-
paste0(names(a)[names(a) %in% names_in_both], ".x")
names(b)[names(b) %in% names_in_both] <-
paste0(names(b)[names(b) %in% names_in_both], ".y")

not_matched_a <- ! seq(nrow(a)) %in% match_table[,1]
not_matched_b <- ! seq(nrow(b)) %in% match_table[,2]
matches <- dplyr::bind_cols(a[match_table[, 1], ], b[match_table[, 2], ])

if (mode == "left") {
matches <- dplyr::bind_rows(matches,a[not_matched_a,])
} else if (mode == "right") {
matches <- dplyr::bind_rows(matches,b[not_matched_b,])
} else if (mode == "full") {
matches <- dplyr::bind_rows(matches,a[not_matched_a,],b[not_matched_b,])
} else if (mode == "anti") {
matches <- dplyr::bind_rows(a[not_matched_a,], b[not_matched_b,])
} else {
stop("Invalid Mode Selected!")
}
# No need to look for rows that don't match
if (mode == "inner") {
return(matches)
}

not_matched_a <- !seq(nrow(a)) %in% match_table[, 1]
not_matched_b <- !seq(nrow(b)) %in% match_table[, 2]

if (mode == "left") {
matches <- dplyr::bind_rows(matches, a[not_matched_a, ])
} else if (mode == "right") {
matches <- dplyr::bind_rows(matches, b[not_matched_b, ])
} else if (mode == "full") {
matches <- dplyr::bind_rows(matches, a[not_matched_a, ], b[not_matched_b, ])
} else if (mode == "anti") {
matches <- dplyr::bind_rows(a[not_matched_a, ], b[not_matched_b, ])
} else {
stop("Invalid Mode Selected!")
}
return(matches)
}
Loading
Loading