Curious traverses relationships in a relational database. Curious queries allow users to explore relationships among objects, traverse recursive relationships, and jump between loosely connected databases. Curious also provides a JSON interface to the objects. Users and programmers can use Curious queries in analysis scripts and applications.
Curious favors a data centric model of application construction; Curious queries expose normalized, relational data, reducing UI dependency on UI specific API end-points serving denormalized data. Changing what data an UI needs no longer requires changing the UI specific end-points.
Curious works well with deep data models with many relationships. A Curious query can traverse 10s of foreign key like relationships efficiently. Curious queries always operate on sets of objects, and can connect a small number of objects via a relationship to a large number of objects, then via another relationship from the large number of objects to a smaller set again. For example, Book to Authors to Country of Residence. Unlike GraphQL, Curious outputs relationships between objects, rather than an ever growing tree of JSON representations of the objects.
Book.last(10) Book.author_set Author.country(continent__name="North America")
avg, sum, max, count. ? modifier for left joins. t modifier for dates.
import myapp.models from curious import model_registry def register(): model_registry.register(myapp.models)
Then include register
when your Django app boots up.
Turn off CSRF. Deploy it as a Django app.
Use filter and deferred to real functions.
Requires Docker. Spin up your container using the provided docker-compose.yml
file and Makefile
by running make image
. This creates an image with a correct git configuration for your user,
which makes it easy to release. All of the commands you should need to run are defined the
Makefile
as targets. All of the targets except for image
, are meant to be run inside the
Docker container, but can be run from the host machine by having -ext
appended to them. For
example, to run tests, you could either call make test
from inside the container, or make
test-ext
from the host.
If you are modifying the static assets during development, they can be recompiled with the
build_assets
make task, or by calling python setup.py build_assets
.
./make test-ext
Deployment of tagged commits happens to PyPI automatically via Travis CI. To bump and deploy a new
version, run make bump/[foo]-ext
, where [foo]
is major
, minor
, or patch
. Then
git push origin --tags master
.