Skip to content

bfortuner/computer-vision

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Computer Vision

Self-study guide for traditional and ML-based computer vision techniques

Theory

Implementations of important computer vision and machine learning concepts.

Computer Vision

  • Background Subtraction
  • Colorspace
  • Features
  • Filters
  • Geometry
    • Affine transforms
    • Projective transforms
  • HOG Features
  • Histograms
  • Homography
  • Hough Transform
  • Image Gradients
  • K-Means
  • Kalman Filter
  • Linear algebra
    • Vectors
    • Matrices
  • Morphological Operations
  • Optical Flow
  • Segmentation
  • Thresholding

Deep Learning

  • Autoencoder
  • CNN
  • GAN
  • VAE

Applied

Solutions to common tasks with popular libraries: OpenCV, PyTorch, Scikit-learn..

  • Classification
    • ResNet
    • SqueezeNet
  • Object Detection
  • Multi-Object Tracking
    • Ball Tracking
    • Player Tracking
  • Image Processing
    • Grayscale
  • Segmentation
    • FC-DenseNet
    • UNet
  • SfM
    • Image Stitching

Problems

Coding problems and solutions. Mostly computer science fundamentals with a slight focus on computer vision.

  • Arrays
  • Matrix
  • HashMap
  • Stacks/Queues
  • Strings
  • Dynamic Programming
  • LinkedLists
  • Recursion
  • Trees

Papers

Notes on interesting computer vision papers.

Setup

Dependencies

  • Anaconda 3
  • OpenCV 3
  • Pytorch >0.2
  • Tensorflow
  • GPU

Hardware

Datasets

  • Download link for datasets in this repo.

Resources

Courses

Books

Papers

Datasets

About

Computer vision sabbatical study materials

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published