-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #9 from ratnadiraw/ratna_check
ratna: annotation results
- Loading branch information
Showing
108 changed files
with
10,964 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
import matplotlib.pyplot as plt | ||
|
||
def f_306(number_list, bins): | ||
fig, ax = plt.subplots() | ||
ax.hist(number_list, bins=bins) | ||
ax.set_title('Histogram') | ||
ax.set_xlabel('Number') | ||
ax.set_ylabel('Frequency') | ||
plt.show() | ||
return ax | ||
|
||
|
||
|
||
import unittest | ||
import matplotlib.pyplot as plt | ||
|
||
# Test data (this could be in a separate file or generated dynamically in real-world scenarios) | ||
test_data = {'small_dataset': [8, 8, 10, 2, 6, 8, 10, 2, 6, 7], 'large_dataset': [4, 9, 42, 79, 5, 60, 27, 58, 34, 61, 44, 68, 1, 78, 93, 11, 100, 69, 89, 45, 43, 7, 54, 31, 75, 64, 20, 93, 93, 95, 33, 19, 2, 6, 49, 18, 95, 62, 36, 52, 48, 61, 78, 61, 48, 17, 79, 4, 54, 63, 64, 37, 79, 22, 3, 24, 42, 1, 59, 25, 15, 53, 81, 86, 2, 34, 71, 80, 11, 36, 90, 37, 80, 48, 35, 66, 13, 57, 13, 16, 32, 42, 48, 96, 92, 60, 4, 14, 45, 45, 52, 88, 49, 71, 91, 77, 17, 27, 34, 18, 88, 41, 18, 65, 58, 18, 62, 77, 2, 5, 22, 2, 47, 39, 5, 17, 87, 85, 54, 7, 97, 32, 62, 92, 10, 45, 66, 58, 61, 25, 46, 10, 70, 60, 41, 5, 78, 79, 64, 36, 71, 45, 9, 11, 85, 51, 53, 71, 47, 88, 45, 37, 92, 72, 35, 70, 66, 28, 76, 97, 34, 13, 36, 88, 80, 86, 41, 91, 23, 2, 51, 61, 44, 50, 37, 90, 76, 45, 45, 51, 6, 12, 92, 16, 30, 74, 55, 58, 57, 77, 15, 51, 17, 48, 96, 89, 79, 16, 66, 30, 86, 53, 13, 61, 12, 66, 13, 94, 98, 82, 58, 19, 75, 22, 32, 24, 5, 49, 75, 16, 58, 36, 33, 79, 7, 58, 100, 54, 42, 74, 30, 52, 8, 68, 43, 97, 28, 47, 6, 51, 54, 62, 82, 4, 18, 82, 43, 72, 64, 97, 62, 90, 54, 1, 60, 27, 27, 42, 83, 100, 85, 73, 13, 5, 2, 96, 65, 28, 51, 28, 17, 35, 36, 71, 14, 53, 18, 23, 71, 85, 6, 1, 61, 68, 52, 9, 66, 37, 70, 91, 65, 59, 91, 55, 34, 86, 4, 48, 56, 55, 31, 21, 88, 41, 27, 81, 13, 34, 30, 42, 35, 94, 50, 82, 54, 4, 70, 52, 19, 38, 57, 89, 9, 35, 77, 79, 98, 29, 73, 92, 54, 38, 14, 71, 49, 15, 70, 16, 25, 79, 74, 76, 70, 7, 37, 36, 92, 51, 92, 37, 57, 10, 51, 3, 20, 66, 38, 1, 56, 15, 8, 46, 47, 75, 89, 24, 18, 84, 78, 66, 16, 76, 36, 58, 22, 96, 56, 22, 64, 9, 24, 74, 87, 50, 82, 1, 7, 73, 96, 91, 31, 61, 59, 95, 82, 92, 3, 37, 24, 22, 3, 54, 29, 52, 32, 82, 87, 42, 45, 4, 26, 96, 59, 42, 69, 51, 74, 25, 70, 90, 52, 30, 51, 69, 21, 8, 8, 65, 86, 26, 19, 61, 37, 58, 3, 21, 100, 7, 59, 5, 69, 38, 30, 11, 48, 9, 11, 7, 20, 46, 86, 63, 98, 51, 82, 51, 22, 18, 10, 34, 98, 54, 22, 51, 46, 54, 14, 79, 74, 84, 38, 25, 16, 28, 19, 100, 94, 87, 54, 81, 7, 56, 7, 7, 6, 1, 81, 40, 99, 88, 21, 28, 79, 74, 67, 16, 89, 17, 87, 86, 39, 75, 91, 87, 33, 25, 68, 25, 58, 96, 61, 92, 39, 50, 36, 30, 23, 28, 82, 52, 28, 23, 92, 17, 46, 62, 69, 80, 14, 96, 44, 98, 77, 39, 92, 69, 7, 22, 50, 12, 25, 76, 26, 34, 35, 99, 66, 97, 44, 79, 41, 41, 41, 41, 28, 17, 49, 79, 47, 56, 77, 27, 50, 6, 41, 59, 19, 15, 27, 58, 25, 62, 51, 12, 57, 38, 81, 88, 67, 82, 37, 8, 94, 77, 92, 88, 98, 59, 25, 9, 38, 48, 43, 23, 51, 11, 92, 32, 45, 46, 38, 54, 32, 45, 22, 65, 5, 66, 80, 84, 6, 80, 65, 14, 81, 19, 77, 7, 24, 46, 34, 53, 36, 48, 46, 81, 72, 55, 33, 66, 68, 34, 5, 14, 91, 35, 59, 61, 51, 92, 87, 10, 24, 33, 9, 89, 8, 28, 99, 4, 41, 56, 39, 25, 27, 80, 35, 28, 86, 21, 61, 73, 19, 68, 98, 70, 40, 89, 12, 31, 55, 92, 4, 52, 14, 13, 5, 91, 41, 56, 36, 70, 39, 51, 51, 39, 42, 39, 32, 84, 77, 31, 42, 46, 36, 59, 20, 30, 87, 3, 71, 34, 3, 43, 31, 81, 75, 53, 65, 77, 43, 92, 77, 46, 62, 24, 71, 80, 33, 10, 72, 75, 24, 79, 9, 20, 9, 58, 9, 72, 17, 15, 49, 82, 20, 39, 39, 29, 81, 42, 72, 60, 91, 6, 81, 85, 15, 38, 79, 60, 24, 20, 58, 97, 100, 34, 74, 66, 56, 55, 8, 61, 79, 86, 94, 75, 23, 53, 60, 71, 95, 47, 82, 98, 45, 3, 16, 53, 15, 100, 42, 37, 76, 59, 19, 40, 88, 8, 9, 42, 53, 83, 37, 86, 84, 3, 37, 14, 3, 66, 43, 22, 22, 3, 21, 94, 29, 13, 49, 30, 4, 3, 4, 2, 83, 41, 92, 21, 64, 50, 66, 39, 88, 29, 81, 8, 19, 41, 46, 50, 53, 41, 50, 74, 32, 22, 50, 21, 37, 3, 78, 7, 37, 97, 5, 50, 64, 1, 17, 43, 52, 52, 82, 47, 20, 66, 16, 51, 63, 92, 83, 53, 61, 99, 61, 37, 41, 63, 7, 8, 93, 7, 45, 74, 2, 68, 16, 12, 93, 99, 32, 32, 68, 9, 39, 67, 81, 6, 23, 30, 67, 49, 40, 6, 29, 29, 95, 88, 64, 54, 24, 16, 80, 24, 26, 56, 44, 20, 35, 93, 49, 5, 33, 1, 40, 94, 18, 73, 44, 85, 98, 25, 24, 84, 75, 68, 48, 96, 5, 81, 13, 90, 37, 26, 9, 52, 31, 88, 46, 40, 8, 63, 65, 50, 74, 86, 100, 86, 66, 24, 35, 95, 80, 30, 49, 16, 57, 14, 80, 28, 13, 28, 71, 3, 2, 94, 24, 43, 8, 53, 86, 25, 75, 59, 59, 48, 71, 19, 34, 72, 4, 17, 2, 60, 51, 21, 9, 32, 29, 25, 81, 32, 37, 93, 93, 65, 52, 48, 96, 78], 'uniform_dataset': [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], 'empty_dataset': [], 'mixed_dataset': [30, 40, 20, 1, 20, 50, 1, 50, 20, 20, 1, 50, 20, 50, 10, 10, 1, 20, 20, 20, 20, 20, 1, 1, 40, 30, 30, 30, 30, 50, 1, 10, 40, 1, 30, 20, 40, 30, 50, 20, 50, 30, 40, 20, 20, 10, 40, 10, 50, 20]} | ||
|
||
def run_tests(): | ||
suite = unittest.TestSuite() | ||
suite.addTest(unittest.makeSuite(TestCases)) | ||
runner = unittest.TextTestRunner() | ||
runner.run(suite) | ||
|
||
class TestCases(unittest.TestCase): | ||
def test_case_1(self): | ||
ax = f_306(test_data["small_dataset"], 5) | ||
self.assertIsInstance(ax, plt.Axes) | ||
self.assertEqual(ax.get_title(), "Histogram") | ||
self.assertEqual(ax.get_xlabel(), "Number") | ||
self.assertEqual(ax.get_ylabel(), "Frequency") | ||
|
||
def test_case_2(self): | ||
ax = f_306(test_data["large_dataset"], 10) | ||
self.assertIsInstance(ax, plt.Axes) | ||
self.assertEqual(ax.get_title(), "Histogram") | ||
self.assertEqual(ax.get_xlabel(), "Number") | ||
self.assertEqual(ax.get_ylabel(), "Frequency") | ||
|
||
def test_case_3(self): | ||
ax = f_306(test_data["uniform_dataset"], 3) | ||
self.assertIsInstance(ax, plt.Axes) | ||
self.assertEqual(ax.get_title(), "Histogram") | ||
self.assertEqual(ax.get_xlabel(), "Number") | ||
self.assertEqual(ax.get_ylabel(), "Frequency") | ||
|
||
def test_case_4(self): | ||
ax = f_306(test_data["empty_dataset"], 5) | ||
self.assertIsInstance(ax, plt.Axes) | ||
self.assertEqual(ax.get_title(), "Histogram") | ||
self.assertEqual(ax.get_xlabel(), "Number") | ||
self.assertEqual(ax.get_ylabel(), "Frequency") | ||
|
||
def test_case_5(self): | ||
ax = f_306(test_data["mixed_dataset"], 6) | ||
self.assertIsInstance(ax, plt.Axes) | ||
self.assertEqual(ax.get_title(), "Histogram") | ||
self.assertEqual(ax.get_xlabel(), "Number") | ||
self.assertEqual(ax.get_ylabel(), "Frequency") | ||
|
||
if __name__ == "__main__": | ||
run_tests() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
import numpy as np | ||
from scipy.stats import norm | ||
import matplotlib.pyplot as plt | ||
|
||
def f_313(length): | ||
""" | ||
Create a normal distribution with a given length, plot its histogram alongside the | ||
probability density function, and return the distribution and the plot. | ||
Parameters: | ||
- length (int): The length of the distribution to be generated. | ||
Returns: | ||
- tuple: A tuple containing: | ||
1. numpy array with the normal distribution. | ||
2. matplotlib Axes object representing the plot. | ||
Requirements: | ||
- numpy | ||
- scipy.stats | ||
- matplotlib.pyplot | ||
Constants: | ||
- MU (mean): 0 | ||
- SIGMA (standard deviation): 1 | ||
Example: | ||
>>> distribution, ax = f_312(1000) | ||
>>> print(type(distribution)) | ||
<class 'numpy.ndarray'> | ||
>>> print(type(ax)) | ||
<class 'matplotlib.axes._subplots.AxesSubplot'> | ||
""" | ||
|
||
MU = 0 | ||
SIGMA = 1 | ||
|
||
distribution = np.random.normal(MU, SIGMA, length) | ||
fig, ax = plt.subplots() | ||
ax.hist(distribution, 30, density=True, label='Histogram') | ||
ax.plot(np.sort(distribution), norm.pdf(np.sort(distribution), MU, SIGMA), | ||
linewidth=2, color='r', label='PDF') | ||
ax.legend() | ||
|
||
return distribution, ax | ||
|
||
import unittest | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
def run_tests(): | ||
suite = unittest.TestSuite() | ||
suite.addTest(unittest.makeSuite(TestCases)) | ||
runner = unittest.TextTestRunner() | ||
runner.run(suite) | ||
|
||
class TestCases(unittest.TestCase): | ||
def test_case_1(self): | ||
distribution, ax = f_313(1000) | ||
self.assertIsInstance(distribution, np.ndarray, "Expected distribution to be a numpy array") | ||
self.assertIsInstance(ax, plt.Axes, "Expected ax to be a matplotlib Axes object") | ||
|
||
def test_case_2(self): | ||
length = 500 | ||
distribution, _ = f_313(length) | ||
self.assertEqual(len(distribution), length, f"Expected distribution length to be {length}") | ||
|
||
def test_case_3(self): | ||
distribution, _ = f_313(1000) | ||
mean = distribution.mean() | ||
std_dev = distribution.std() | ||
self.assertAlmostEqual(mean, 0, delta=0.1, msg=f"Expected mean to be close to 0, got {mean}") | ||
self.assertAlmostEqual(std_dev, 1, delta=0.1, msg=f"Expected std_dev to be close to 1, got {std_dev}") | ||
|
||
def test_case_4(self): | ||
distribution, ax = f_313(1000) | ||
lines = ax.get_lines() | ||
self.assertEqual(len(lines), 1, "Expected one line representing PDF in the plot") | ||
bars = [rect for rect in ax.get_children() if isinstance(rect, plt.Rectangle)] | ||
self.assertGreater(len(bars), 1, "Expected multiple bars representing histogram in the plot") | ||
|
||
def test_case_5(self): | ||
distribution, _ = f_313(2000) | ||
self.assertEqual(distribution.shape, (2000,), "Expected shape of distribution to match input length") | ||
if __name__ == "__main__": | ||
run_tests() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
import os | ||
|
||
def f_314(directory): | ||
""" | ||
Removes all jQuery files (JavaScript files containing 'jquery' in their name) from a specified directory. | ||
Parameters: | ||
directory (str): The directory path. | ||
Returns: | ||
tuple: A tuple containing two elements: | ||
- int: The number of files removed. | ||
- list: The names of the removed files. | ||
Raises: | ||
FileNotFoundError: If the specified directory does not exist. | ||
Example: | ||
>>> f_280("/path/to/directory") | ||
(3, ['jquery-1.js', 'jquery-2.js', 'jquery-ui.js']) # Assuming 3 jQuery files were removed | ||
""" | ||
|
||
# Check if directory exists | ||
if not os.path.exists(directory): | ||
raise FileNotFoundError(f"Directory '{directory}' does not exist.") | ||
|
||
# Get all files in the directory | ||
files = os.listdir(directory) | ||
|
||
# Remove jQuery files | ||
removed_files = 0 | ||
removed_file_names = [] | ||
for file in files: | ||
if 'jquery' in file and file.endswith('.js'): | ||
os.remove(os.path.join(directory, file)) | ||
removed_files += 1 | ||
removed_file_names.append(file) | ||
|
||
return removed_files, removed_file_names | ||
|
||
import unittest | ||
from unittest.mock import MagicMock, patch | ||
|
||
class TestF1590(unittest.TestCase): | ||
|
||
@patch('os.path.exists') | ||
@patch('os.listdir') | ||
@patch('os.remove') | ||
def test_remove_jquery_files(self, mock_remove, mock_listdir, mock_exists): | ||
mock_exists.return_value = True | ||
mock_listdir.return_value = ['jquery-1.js', 'jquery-2.js', 'jquery-ui.js', 'otherfile.txt', 'example.js'] | ||
removed_count, removed_files = f_314('/fake/directory') | ||
self.assertEqual(removed_count, 3) | ||
self.assertListEqual(removed_files, ['jquery-1.js', 'jquery-2.js', 'jquery-ui.js']) | ||
|
||
@patch('os.path.exists') | ||
@patch('os.listdir') | ||
def test_empty_directory(self, mock_listdir, mock_exists): | ||
mock_exists.return_value = True | ||
mock_listdir.return_value = [] | ||
removed_count, removed_files = f_314('/fake/empty/directory') | ||
self.assertEqual(removed_count, 0) | ||
self.assertListEqual(removed_files, []) | ||
|
||
@patch('os.path.exists') | ||
def test_nonexistent_directory(self, mock_exists): | ||
mock_exists.return_value = False | ||
with self.assertRaises(FileNotFoundError): | ||
f_314('/fake/nonexistent/directory') | ||
|
||
# More tests can be added here | ||
|
||
def run_tests(): | ||
suite = unittest.TestSuite() | ||
suite.addTest(unittest.makeSuite(TestF1590)) | ||
runner = unittest.TextTestRunner() | ||
runner.run(suite) | ||
|
||
if __name__ == '__main__': | ||
run_tests() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
import networkx as nx | ||
import matplotlib.pyplot as plt | ||
import random | ||
import numpy as np | ||
|
||
# Constants | ||
N_NODES = 10 | ||
|
||
def f_319(data): | ||
''' | ||
Add a new key "a" with the value 1 to the "data" dictionary, create a random graph with "data" as node attributes, | ||
and visualize the graph, where the nodes are labeled with the value of key "a". | ||
Parameters: | ||
- data (dict): The input data as a dictionary. | ||
Returns: | ||
- Graph (networkx.Graph): The generated NetworkX graph. | ||
- Axes (matplotlib.axes._subplots.AxesSubplot): The Axes object representing the plot. | ||
Requirements: | ||
- networkx: Used for creating and handling the graph. | ||
- matplotlib: Used for visualizing the graph. | ||
- random: Used internally by networkx for generating random graphs. | ||
- numpy: Used internally by networkx and matplotlib. | ||
Example: | ||
>>> data = {'key1': 'value1', 'key2': 'value2', 'key3': 'value1'} | ||
>>> graph, axes = f_319(data) | ||
''' | ||
# Add new key 'a' with value 1 | ||
data['a'] = 1 | ||
|
||
# Generate a random graph with `data` as node attributes | ||
G = nx.gnp_random_graph(N_NODES, 0.5, seed=1) | ||
for node in G.nodes(): | ||
G.nodes[node].update(data) | ||
|
||
# Visualize the graph | ||
fig, ax = plt.subplots() | ||
pos = nx.spring_layout(G, seed=1) | ||
labels = nx.get_node_attributes(G, 'a') | ||
nx.draw(G, pos, with_labels=True, labels=labels, ax=ax) | ||
|
||
return G, ax | ||
|
||
|
||
|
||
import unittest | ||
import networkx as nx | ||
import matplotlib.pyplot as plt | ||
import random | ||
import numpy as np | ||
|
||
# Blackbox test cases | ||
def run_tests(): | ||
suite = unittest.TestSuite() | ||
suite.addTest(unittest.makeSuite(TestCases)) | ||
runner = unittest.TextTestRunner() | ||
runner.run(suite) | ||
|
||
class TestCases(unittest.TestCase): | ||
def test_case_1(self): | ||
# Input 1: Test with an empty dictionary | ||
data = {} | ||
graph, ax = f_319(data) | ||
|
||
# Assertions | ||
self.assertIsInstance(graph, nx.Graph) | ||
self.assertEqual(len(graph.nodes), N_NODES) | ||
for node_data in graph.nodes.data(): | ||
self.assertIn('a', node_data[1]) | ||
self.assertEqual(node_data[1]['a'], 1) | ||
self.assertIsInstance(ax, plt.Axes) | ||
|
||
def test_case_2(self): | ||
# Input 1: Test with an empty dictionary | ||
data = {} | ||
graph, ax = f_319(data) | ||
|
||
# Assertions | ||
self.assertIsInstance(graph, nx.Graph) | ||
self.assertEqual(len(graph.nodes), N_NODES) | ||
for node_data in graph.nodes.data(): | ||
self.assertIn('a', node_data[1]) | ||
self.assertEqual(node_data[1]['a'], 1) | ||
self.assertIsInstance(ax, plt.Axes) | ||
|
||
def test_case_3(self): | ||
# Input 1: Test with an empty dictionary | ||
data = {} | ||
graph, ax = f_319(data) | ||
|
||
# Assertions | ||
self.assertIsInstance(graph, nx.Graph) | ||
self.assertEqual(len(graph.nodes), N_NODES) | ||
for node_data in graph.nodes.data(): | ||
self.assertIn('a', node_data[1]) | ||
self.assertEqual(node_data[1]['a'], 1) | ||
self.assertIsInstance(ax, plt.Axes) | ||
|
||
def test_case_4(self): | ||
# Input 1: Test with an empty dictionary | ||
data = {} | ||
graph, ax = f_319(data) | ||
|
||
# Assertions | ||
self.assertIsInstance(graph, nx.Graph) | ||
self.assertEqual(len(graph.nodes), N_NODES) | ||
for node_data in graph.nodes.data(): | ||
self.assertIn('a', node_data[1]) | ||
self.assertEqual(node_data[1]['a'], 1) | ||
self.assertIsInstance(ax, plt.Axes) | ||
|
||
def test_case_5(self): | ||
# Input 1: Test with an empty dictionary | ||
data = {} | ||
graph, ax = f_319(data) | ||
|
||
# Assertions | ||
self.assertIsInstance(graph, nx.Graph) | ||
self.assertEqual(len(graph.nodes), N_NODES) | ||
for node_data in graph.nodes.data(): | ||
self.assertIn('a', node_data[1]) | ||
self.assertEqual(node_data[1]['a'], 1) | ||
self.assertIsInstance(ax, plt.Axes) | ||
if __name__ == "__main__": | ||
run_tests() |
Oops, something went wrong.