Reimplementations of deep learning models.
ottt_cifar10.py
: From Online Training Through Time for Spiking Neural Networks
$ python main.py --help
...
$ python main.py --batch-size 128 vgg16 cifar100 train /tmp/logs
...
$ python main.py --batch-size 128 vgg16 cifar100 test /path/to/net.pth
...
$ CUDA_VISIBLE_DEVICES=-1 python main.py --batch-size 128 vgg16qcfs cifar100 train /tmp/logs
- With dropout 0.5 VGG16 does not converge on CIFAR100 with learning rate 0.1 and batch size 32.
Abbreviations:
ABBR | MEANING |
---|---|
ACC | Validation accuracy |
AUG | Data augmentation strategy |
BS | Batch size |
DO | Dropout |
LR | Learning rate |
VER | Version code |
WD | Weight decay |
PRG | Training in progress |
N | Number of epochs |
DATE | DATASET | MODEL | VER | BS | AUG | WD | DO | LR | SEED | N | ACC | PRG |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2025-02-19 | CIFAR10 | AlexNet | std | 128/8 | std | 0.0 | 0.0 | 0.1 | 1000 | 976 | 94.3 | n |
CIFAR10 | DenseNet | std | 128 | std | 0.0 | 94.9 | n | |||||
CIFAR10 | DenseNet | std | 256 | std | 0.0 | 94.6 | n | |||||
CIFAR10 | DenseNet | std | 512 | std | 0.0 | 93.8 | n | |||||
2025-02-11 | CIFAR10 | DenseNet | std | 256/8 | aa | 0.0 | 0.0 | 1003 | 443 | 96.4 | n | |
CIFAR10 | VGG16 | std | ? | std | 0.0 | 0.5 | 93.6 | n | ||||
CIFAR10 | VGG16 | lin-512 | ? | std | 0.0 | 0.5 | 92.1 | n | ||||
CIFAR10 | VGG16 | no-BN | ? | std | 0.0 | 0.5 | 92.6 | n | ||||
2025-02-11 | CIFAR100 | DenseNet | std | 256/8 | aa | 0.0 | 0.0 | 1007 | 415 | 78.4 | n | |
2025-02-15 | CIFAR100 | EffNet-B0 | std | 256/8 | aa | 0.0 | 0.0 | 1010 | 201 | 75.5 | n | |
2025-02-15 | CIFAR100 | EffNet-B0 | std | 512/8 | aa | 0.0 | 0.0 | 1010 | 516 | 77.4 | n | |
2025-02-18 | CIFAR100 | ResNet18 | std | 128/8 | aa | 0.0000 | 0.0 | 0.10 | 1000 | 710 | 76.8 | n |
2025-02-11 | CIFAR100 | ResNet18 | std | 256/8 | aa | 0.0 | 0.0 | 1004 | 731 | 76.7 | n | |
2025-02-14 | CIFAR100 | ResNet18 | std | 256/8 | aa | 0.0004 | 0.0 | 1012 | 908 | 77.1 | n | |
2025-02-14 | CIFAR100 | ResNet18 | std | 256/8 | aa | 0.0005 | 0.0 | 1010 | 765 | 77.7 | n | |
2025-02-14 | CIFAR100 | ResNet18 | std | 256/8 | aa | 0.0005 | 0.0 | 1011 | 923 | 77.7 | n | |
2025-02-14 | CIFAR100 | ResNet18 | std | 256/8 | aa | 0.0010 | 0.0 | 1015 | 637 | 75.0 | n | |
2025-02-13 | CIFAR100 | ResNet18 | std | 512/8 | aa | 0.0 | 0.0 | 1010 | 636 | 76.2 | n | |
2025-02-11 | CIFAR100 | ResNet18 | std | 512/8 | aa | 0.0005 | 0.0 | 1003 | 555 | 77.3 | n | |
2025-02-11 | CIFAR100 | ResNet18 | std | 512/8 | aa | 0.0010 | 0.0 | 1010 | 619 | 76.8 | n | |
2025-02-12 | CIFAR100 | ResNet18 | std | 1024/8 | aa | 0.0 | 0.0 | 1010 | 572 | 75.6 | n | |
2025-02-12 | CIFAR100 | ResNet18 | std | 1024/8 | aa | 0.0010 | 0.0 | 1010 | 771 | 77.2 | n | |
2025-02-12 | CIFAR100 | ResNet18 | std | 1024/8 | aa | 0.0020 | 0.0 | 1010 | 554 | 74.2 | n | |
CIFAR100 | ResNet50 | std | 256 | aa | 0.0 | 47.8 | n | |||||
CIFAR100 | ResNet20 | std | 256 | aa | 0.0 | 1001 | 67.2 | n | ||||
2024-10-01 | CIFAR100 | ResNet20 | std | 512 | aa | 0.0 | 0.0 | 1001 | 69.1 | n | ||
2024-10-01 | CIFAR100 | ResNet20 | std | 256 | aa | 0.0 | 0.0 | 1001 | 69.4 | n | ||
2025-02-17 | CIFAR100 | ResNet20 | std | 128/8 | aa | 0.0005 | 0.0 | 0.10 | 1000 | 953 | 72.8 | n |
2025-02-18 | CIFAR100 | ResNet20-PA | std | 128/8 | aa | 0.0005 | 0.0 | 0.05 | 1000 | 962 | 71.6 | n |
2025-02-18 | CIFAR100 | ResNet20-PA | std | 128/8 | aa | 0.0005 | 0.0 | 0.10 | 1000 | 975 | 71.7 | n |
2025-02-18 | CIFAR100 | ResNet20-PA | std | 128/8 | aa | 0.0005 | 0.0 | 0.10 | 1001 | 739 | 71.0 | n |
2024-10-06 | CIFAR100 | ResNet18QCFS | std | 256 | aa | 0.0005 | 0.0 | 1001 | 79.8 | n | ||
2024-10-06 | CIFAR100 | ResNet18QCFS | std | 128 | aa | 0.0005 | 0.0 | 1001 | 80.3 | n | ||
CIFAR100 | VGG16 | std | 32 | aa | 0.0 | 0.0 | 1001 | 74.9 | n | |||
CIFAR100 | VGG16 | std | 64 | aa | 0.0 | 0.5 | 1001 | 69.1 | n | |||
CIFAR100 | VGG16 | std | 64 | std | 0.0 | 0.5 | 71.7 | n | ||||
CIFAR100 | VGG16 | std | 128 | aa | 0.0 | 0.5 | 1001 | 75.4 | n | |||
2025-02-01 | CIFAR100 | VGG16 | std | 128 | aa | 0.0005 | 0.0 | 1001 | 77.4 | n | ||
CIFAR100 | VGG16 | std | 256 | aa | 0.0 | 0.5 | 74.7 | n | ||||
2024-10-02 | CIFAR100 | VGG16 | std | 256 | aa | 0.0005 | 0.0 | 1001 | 77.6 | n | ||
2025-02-11 | CIFAR100 | VGG16 | std | 256/8 | aa | 0.0004 | 0.0 | 1003 | 600 | 74.3 | n | |
CIFAR100 | VGG16 | std | 256 | std | 0.0 | 0.5 | 70.7 | n | ||||
CIFAR100 | VGG16 | std | 512 | aa | 0.0 | 0.0 | 1001 | 72.9 | n | |||
2025-02-10 | CIFAR100 | VGG16 | std | 512/8 | aa | 0.0005 | 0.0 | 1001 | 73.4 | n | ||
CIFAR100 | VGG16QCFS | std | 128 | aa | 0.0 | 0.0 | 1001 | 53.9 | n | |||
CIFAR100 | VGG16QCFS | std | 256 | aa | 0.0 | 0.5 | 1001 | 72.0 | n | |||
2025-03-11 | CIFAR100 | VGG16QCFS | std | 256/8 | aa | 0.0005 | 0.0 | 0.05 | 999 | 984 | 76.1 | n |
2025-02-17 | CIFAR100 | VGG16QCFS | std | 256/8 | aa | 0.0005 | 0.0 | 0.05 | 1010 | 963 | 76.0 | n |
2025-02-17 | CIFAR100 | VGG16QCFS | std | 256/8 | aa | 0.0005 | 0.0 | 0.10 | 1010 | 966 | 76.4 | n |
2025-02-17 | CIFAR100 | VGG16QCFS | std | 256/8 | aa | 0.0005 | 0.0 | 0.20 | 1010 | 703 | 72.6 | n |