This is the code respository for the following paper. https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
torch
pymatgen
torch-geometric
e3nn==0.1.1
(Install version 0.1.1 here for CUDA or viapip install e3nn==0.1.1
for CPU only)
square_to_rectangle.ipynb
- Demonstrates how E(3)NNs exhibit Curie's principle and that the gradients of the network can be used to find symmetry breaking input
perovskite_order_parameters_determine_irreps.ipynb
- Determines the irreps needed to describe octahedral distortions in perovskites in space group Pnma (62).
perovskite_order_parameters_spacegroup_74_from_62.ipynb
- Recovers an intermediate structure in space group 74 from input in space group 221 and output in space group 62.
perovskite_order_parameters_with_explicit_k.ipynb
- Recovers pseudovector order parameters for structure in space group 62 using explicit k-vectors.
If you find this repository helpful for your research. Please consider citing the following:
@article{Smidt2021,
doi = {10.1103/physrevresearch.3.l012002},
url = {https://doi.org/10.1103/physrevresearch.3.l012002},
year = {2021},
month = jan,
publisher = {American Physical Society ({APS})},
volume = {3},
number = {1},
author = {Tess E. Smidt and Mario Geiger and Benjamin Kurt Miller},
title = {Finding symmetry breaking order parameters with Euclidean neural networks},
journal = {Physical Review Research}
}
@misc{e3nn_symm_breaking,
doi = {10.5281/ZENODO.4087189},
url = {https://zenodo.org/record/4087189},
author = {Smidt, Tess},
title = {Code repository for ``Finding symmetry breaking order parameters with Euclidean neural networks''},
publisher = {Zenodo},
year = {2020},
copyright = {Open Access}
}