Skip to content

Commit

Permalink
Fix doctest
Browse files Browse the repository at this point in the history
Signed-off-by: Johannes Mueller <johannes.mueller4@de.bosch.com>
  • Loading branch information
johannes-mueller committed Oct 10, 2024
1 parent 9a57d55 commit 4966fd0
Show file tree
Hide file tree
Showing 2 changed files with 49 additions and 36 deletions.
67 changes: 42 additions & 25 deletions src/pylife/strength/fkm_load_distribution.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,41 +14,58 @@
# See the License for the specific language governing permissions and
# limitations under the License.

r'''Scale up a load sequence to incorporate safety factors for FKM
"""Scale up a load sequence to incorporate safety factors for FKM
nonlinear lifetime assessment.
Given a pandas Series of load values, return a scaled version where the safety has been incorporated.
The series is scaled by a constant value :math:`\gamma_L`, which models the distribution of the load,
the severity of the failure (modeled by :math:`P_A`) and the considered load probability of either
:math:`P_L=2.5 \%` or :math:`P_L=50 \%`.
Given a pandas Series of load values, return a scaled version where the safety
has been incorporated. The series is scaled by a constant value
:math:`\gamma_L`, which models the distribution of the load, the severity of
the failure (modeled by :math:`P_A`) and the considered load probability of
either :math:`P_L=2.5 \%` or :math:`P_L=50 \%`.
The FKM nonlinear guideline defines three possible methods to consider the statistical distribution of the load:
The FKM nonlinear guideline defines three possible methods to consider the
statistical distribution of the load:
* a normal distribution with given standard deviation, $s_L$
* a logarithmic-normal distribution with given standard deviation $LSD_s$
* an unknown distribution, use the constant factor :math:`\gamma_L=1.1` for $P_L = 2.5\%$
* an unknown distribution, use the constant factor :math:`\gamma_L=1.1` for
$P_L = 2.5\%$
For these three methods, there exist the three accessors `fkm_safety_normal_from_stddev`, `fkm_safety_lognormal_from_stddev`,
and `fkm_safety_blanket`.
For these three methods, there exist the three accessors
`fkm_safety_normal_from_stddev`, `fkm_safety_lognormal_from_stddev`, and
`fkm_safety_blanket`.
The resulting scaling factor can be retrieved with ``.gamma_L(input_parameters)``, the scaled load series can be obtained
with ``.scaled_load_sequence(input_parameters)``.
The resulting scaling factor can be retrieved with
``.gamma_L(input_parameters)``, the scaled load series can be obtained with
``.scaled_load_sequence(input_parameters)``.
Examples
--------
Assuming ``load_sequence`` is a pandas Series of load values and ``input_parameters`` is a series containing the required
parameters, apply the three possible scaling methods as follows:
>>> input_parameters = pd.Series({"P_A": 1e-5, "P_L": 50, "s_L": 10, "LSD_s": 1e-2,})
>>> load_sequence = pd.Series([100.0, 150.0, 200.0], name="load")
>>> # uses input_parameters.s_L, input_parameters.P_L, input_parameters.P_A
>>> scaled_load_sequence = load_sequence.fkm_safety_normal_from_stddev.scaled_load_sequence(input_parameters)
>>> load_sequence.fkm_safety_normal_from_stddev.scaled_load_sequence(input_parameters)
0 114.9450
1 172.4175
2 229.8900
Name: load, dtype: float64
>>> # uses input_parameters.s_L, input_parameters.P_L, input_parameters.P_A
>>> scaled_load_sequence = load_sequence.fkm_safety_lognormal_from_stddev.scaled_load_sequence(input_parameters)
>>> load_sequence.fkm_safety_lognormal_from_stddev.scaled_load_sequence(input_parameters)
0 107.124794
1 160.687191
2 214.249588
Name: load, dtype: float64
>>> # uses input_parameters.P_L
>>> scaled_load_sequence = load_sequence.fkm_safety_blanket.scaled_load_sequence(input_parameters)
>>> load_sequence.fkm_safety_blanket.scaled_load_sequence(input_parameters)
0 100.0
1 150.0
2 200.0
Name: load, dtype: float64
'''
"""

__author__ = "Benjamin Maier"
__maintainer__ = __author__
Expand All @@ -60,7 +77,7 @@
@pd.api.extensions.register_dataframe_accessor("fkm_load_sequence")
@pd.api.extensions.register_series_accessor("fkm_load_sequence")
class FKMLoadSequence(PylifeSignal):
'''Base class used by the safety scaling method. It is used to compute the beta parameter
"""Base class used by the safety scaling method. It is used to compute the beta parameter
and to scale the load sequence by a constant gamma_L.
This class can be used from user code to scale a load sequence, potentially on a mesh with other fields set for every node.
Expand All @@ -86,7 +103,7 @@ class FKMLoadSequence(PylifeSignal):
# scale the load sequence by the factor 2, note that col2 is not scaled
mesh.fkm_load_sequence.scaled_by_constant(2)
'''
"""

def scaled_by_constant(self, gamma_L):
"""
Expand Down Expand Up @@ -226,7 +243,7 @@ def _get_beta(self, input_parameters):
@pd.api.extensions.register_dataframe_accessor("fkm_safety_normal_from_stddev")
@pd.api.extensions.register_series_accessor("fkm_safety_normal_from_stddev")
class FKMLoadDistributionNormal(FKMLoadSequence):
r'''Series accessor to get a scaled up load series, i.e., a list of load values with included load safety,
r"""Series accessor to get a scaled up load series, i.e., a list of load values with included load safety,
as used in FKM nonlinear lifetime assessments.
The loads are assumed to follow a **normal distribution** with standard deviation :math:`s_L`.
Expand All @@ -239,7 +256,7 @@ class FKMLoadDistributionNormal(FKMLoadSequence):
See also
--------
:class:`AbstractFKMLoadDistribution`: accesses meshes with connectivity information
'''
"""

def gamma_L(self, input_parameters):
r"""Compute the scaling factor :math:`\gamma_L=(L_\text{max} + \alpha_L) / L_\text{max}`.
Expand Down Expand Up @@ -324,7 +341,7 @@ def scaled_load_sequence(self, input_parameters):
@pd.api.extensions.register_dataframe_accessor("fkm_safety_lognormal_from_stddev")
@pd.api.extensions.register_series_accessor("fkm_safety_lognormal_from_stddev")
class FKMLoadDistributionLognormal(FKMLoadSequence):
r'''Series accessor to get a scaled up load series, i.e., a list of load values with included load safety,
r"""Series accessor to get a scaled up load series, i.e., a list of load values with included load safety,
as used in FKM nonlinear lifetime assessments.
The loads are assumed to follow a **lognormal distribution** with standard deviation :math:`LSD_s`.
Expand All @@ -337,7 +354,7 @@ class FKMLoadDistributionLognormal(FKMLoadSequence):
See also
--------
:class:`AbstractFKMLoadDistribution`: accesses meshes with connectivity information
'''
"""

def gamma_L(self, input_parameters):
r"""Compute the scaling factor :math:`\gamma_L`.
Expand Down Expand Up @@ -413,7 +430,7 @@ def scaled_load_sequence(self, input_parameters):
@pd.api.extensions.register_dataframe_accessor("fkm_safety_blanket")
@pd.api.extensions.register_series_accessor("fkm_safety_blanket")
class FKMLoadDistributionBlanket(FKMLoadSequence):
r'''Series accessor to get a scaled up load series, i.e., a list of load values with included load safety,
r"""Series accessor to get a scaled up load series, i.e., a list of load values with included load safety,
as used in FKM nonlinear lifetime assessments.
The distribution of loads is unknown, therefore a scaling factor of :math:`\gamma_L` = 1.1 is assumed.
Expand All @@ -426,7 +443,7 @@ class FKMLoadDistributionBlanket(FKMLoadSequence):
See also
--------
:class:`AbstractFKMLoadDistribution`: accesses meshes with connectivity information
'''
"""

def gamma_L(self, input_parameters):
r"""Compute the scaling factor :math:`\gamma_L`.
Expand Down
18 changes: 7 additions & 11 deletions tests/strength/test_fkm_load_distribution.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,14 +36,14 @@ def test_load_distribution_normal_1(P_A, resulting_gamma_L, result):
# test with a plain series
load_sequence = pd.Series([100, -200, 100, -250, 200, 0, 200, -200]) # [N]

assessment_parameters = pd.Series({
"P_A": P_A,
"P_L": 50,
"s_L": 10,
})
assessment_parameters = pd.Series({"P_A": P_A, "P_L": 50, "s_L": 10})

# FKMLoadDistributionNormal, uses assessment_parameters.s_L, assessment_parameters.P_L, assessment_parameters.P_A
scaled_load_sequence = load_sequence.fkm_safety_normal_from_stddev.scaled_load_sequence(assessment_parameters)
scaled_load_sequence = (
load_sequence.fkm_safety_normal_from_stddev.scaled_load_sequence(
assessment_parameters
)
)
gamma_L = load_sequence.fkm_safety_normal_from_stddev.gamma_L(assessment_parameters)

assert np.isclose(gamma_L, resulting_gamma_L)
Expand Down Expand Up @@ -164,11 +164,7 @@ def test_load_distribution_lognormal(P_L, resulting_gamma_L, result):
load_sequence = pd.Series([100, -200, 100, -250, 200, 0, 200, -200]) # [N]

# FKMLoadDistributionLognormal, uses assessment_parameters.LSD_s, assessment_parameters.P_L, assessment_parameters.P_A
assessment_parameters = pd.Series({
"P_A": 7.2e-5,
"P_L": P_L,
"LSD_s": 1e-2,
})
assessment_parameters = pd.Series({"P_A": 7.2e-5, "P_L": P_L, "LSD_s": 1e-2})

scaled_load_sequence = load_sequence.fkm_safety_lognormal_from_stddev.scaled_load_sequence(assessment_parameters)
gamma_L = load_sequence.fkm_safety_lognormal_from_stddev.gamma_L(assessment_parameters)
Expand Down

0 comments on commit 4966fd0

Please sign in to comment.