-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.html
775 lines (766 loc) · 140 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<style type="text/css">
@font-face {
font-family: octicons-link;
src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff');
}
body {
-webkit-text-size-adjust: 100%;
text-size-adjust: 100%;
color: #333;
font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
font-size: 16px;
line-height: 1.6;
word-wrap: break-word;
}
a {
background-color: transparent;
}
a:active,
a:hover {
outline: 0;
}
strong {
font-weight: bold;
}
h1 {
font-size: 2em;
margin: 0.67em 0;
}
img {
border: 0;
}
hr {
box-sizing: content-box;
height: 0;
}
pre {
overflow: auto;
}
code,
kbd,
pre {
font-family: monospace, monospace;
font-size: 1em;
}
input {
color: inherit;
font: inherit;
margin: 0;
}
html input[disabled] {
cursor: default;
}
input {
line-height: normal;
}
input[type="checkbox"] {
box-sizing: border-box;
padding: 0;
}
table {
border-collapse: collapse;
border-spacing: 0;
}
td,
th {
padding: 0;
}
* {
box-sizing: border-box;
}
input {
font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
}
a {
color: #4078c0;
text-decoration: none;
}
a:hover,
a:active {
text-decoration: underline;
}
hr {
height: 0;
margin: 15px 0;
overflow: hidden;
background: transparent;
border: 0;
border-bottom: 1px solid #ddd;
}
hr:before {
display: table;
content: "";
}
hr:after {
display: table;
clear: both;
content: "";
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 15px;
margin-bottom: 15px;
line-height: 1.1;
}
h1 {
font-size: 30px;
}
h2 {
font-size: 21px;
}
h3 {
font-size: 16px;
}
h4 {
font-size: 14px;
}
h5 {
font-size: 12px;
}
h6 {
font-size: 11px;
}
blockquote {
margin: 0;
}
ul,
ol {
padding: 0;
margin-top: 0;
margin-bottom: 0;
}
ol ol,
ul ol {
list-style-type: lower-roman;
}
ul ul ol,
ul ol ol,
ol ul ol,
ol ol ol {
list-style-type: lower-alpha;
}
dd {
margin-left: 0;
}
code {
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
font-size: 12px;
}
pre {
margin-top: 0;
margin-bottom: 0;
font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace;
}
.select::-ms-expand {
opacity: 0;
}
.octicon {
font: normal normal normal 16px/1 octicons-link;
display: inline-block;
text-decoration: none;
text-rendering: auto;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.octicon-link:before {
content: '\f05c';
}
.markdown-body:before {
display: table;
content: "";
}
.markdown-body:after {
display: table;
clear: both;
content: "";
}
.markdown-body>*:first-child {
margin-top: 0 !important;
}
.markdown-body>*:last-child {
margin-bottom: 0 !important;
}
a:not([href]) {
color: inherit;
text-decoration: none;
}
.anchor {
display: inline-block;
padding-right: 2px;
margin-left: -18px;
}
.anchor:focus {
outline: none;
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 1em;
margin-bottom: 16px;
font-weight: bold;
line-height: 1.4;
}
h1 .octicon-link,
h2 .octicon-link,
h3 .octicon-link,
h4 .octicon-link,
h5 .octicon-link,
h6 .octicon-link {
color: #000;
vertical-align: middle;
visibility: hidden;
}
h1:hover .anchor,
h2:hover .anchor,
h3:hover .anchor,
h4:hover .anchor,
h5:hover .anchor,
h6:hover .anchor {
text-decoration: none;
}
h1:hover .anchor .octicon-link,
h2:hover .anchor .octicon-link,
h3:hover .anchor .octicon-link,
h4:hover .anchor .octicon-link,
h5:hover .anchor .octicon-link,
h6:hover .anchor .octicon-link {
visibility: visible;
}
h1 {
padding-bottom: 0.3em;
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h1 .anchor {
line-height: 1;
}
h2 {
padding-bottom: 0.3em;
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
h2 .anchor {
line-height: 1;
}
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h3 .anchor {
line-height: 1.2;
}
h4 {
font-size: 1.25em;
}
h4 .anchor {
line-height: 1.2;
}
h5 {
font-size: 1em;
}
h5 .anchor {
line-height: 1.1;
}
h6 {
font-size: 1em;
color: #777;
}
h6 .anchor {
line-height: 1.1;
}
p,
blockquote,
ul,
ol,
dl,
table,
pre {
margin-top: 0;
margin-bottom: 16px;
}
hr {
height: 4px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
}
ul,
ol {
padding-left: 2em;
}
ul ul,
ul ol,
ol ol,
ol ul {
margin-top: 0;
margin-bottom: 0;
}
li>p {
margin-top: 16px;
}
dl {
padding: 0;
}
dl dt {
padding: 0;
margin-top: 16px;
font-size: 1em;
font-style: italic;
font-weight: bold;
}
dl dd {
padding: 0 16px;
margin-bottom: 16px;
}
blockquote {
padding: 0 15px;
color: #777;
border-left: 4px solid #ddd;
}
blockquote>:first-child {
margin-top: 0;
}
blockquote>:last-child {
margin-bottom: 0;
}
table {
display: block;
width: 100%;
overflow: auto;
word-break: normal;
word-break: keep-all;
}
table th {
font-weight: bold;
}
table th,
table td {
padding: 6px 13px;
border: 1px solid #ddd;
}
table tr {
background-color: #fff;
border-top: 1px solid #ccc;
}
table tr:nth-child(2n) {
background-color: #f8f8f8;
}
img {
max-width: 100%;
box-sizing: content-box;
background-color: #fff;
}
code {
padding: 0;
padding-top: 0.2em;
padding-bottom: 0.2em;
margin: 0;
font-size: 85%;
background-color: rgba(0,0,0,0.04);
border-radius: 3px;
}
code:before,
code:after {
letter-spacing: -0.2em;
content: "\00a0";
}
pre>code {
padding: 0;
margin: 0;
font-size: 100%;
word-break: normal;
white-space: pre;
background: transparent;
border: 0;
}
.highlight {
margin-bottom: 16px;
}
.highlight pre,
pre {
padding: 16px;
overflow: auto;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border-radius: 3px;
}
.highlight pre {
margin-bottom: 0;
word-break: normal;
}
pre {
word-wrap: normal;
}
pre code {
display: inline;
max-width: initial;
padding: 0;
margin: 0;
overflow: initial;
line-height: inherit;
word-wrap: normal;
background-color: transparent;
border: 0;
}
pre code:before,
pre code:after {
content: normal;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.pl-c {
color: #969896;
}
.pl-c1,
.pl-s .pl-v {
color: #0086b3;
}
.pl-e,
.pl-en {
color: #795da3;
}
.pl-s .pl-s1,
.pl-smi {
color: #333;
}
.pl-ent {
color: #63a35c;
}
.pl-k {
color: #a71d5d;
}
.pl-pds,
.pl-s,
.pl-s .pl-pse .pl-s1,
.pl-sr,
.pl-sr .pl-cce,
.pl-sr .pl-sra,
.pl-sr .pl-sre {
color: #183691;
}
.pl-v {
color: #ed6a43;
}
.pl-id {
color: #b52a1d;
}
.pl-ii {
background-color: #b52a1d;
color: #f8f8f8;
}
.pl-sr .pl-cce {
color: #63a35c;
font-weight: bold;
}
.pl-ml {
color: #693a17;
}
.pl-mh,
.pl-mh .pl-en,
.pl-ms {
color: #1d3e81;
font-weight: bold;
}
.pl-mq {
color: #008080;
}
.pl-mi {
color: #333;
font-style: italic;
}
.pl-mb {
color: #333;
font-weight: bold;
}
.pl-md {
background-color: #ffecec;
color: #bd2c00;
}
.pl-mi1 {
background-color: #eaffea;
color: #55a532;
}
.pl-mdr {
color: #795da3;
font-weight: bold;
}
.pl-mo {
color: #1d3e81;
}
kbd {
display: inline-block;
padding: 3px 5px;
font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.task-list-item {
list-style-type: none;
}
.task-list-item+.task-list-item {
margin-top: 3px;
}
.task-list-item input {
margin: 0 0.35em 0.25em -1.6em;
vertical-align: middle;
}
:checked+.radio-label {
z-index: 1;
position: relative;
border-color: #4078c0;
}
.sourceLine {
display: inline-block;
}
code .kw { color: #000000; }
code .dt { color: #ed6a43; }
code .dv { color: #009999; }
code .bn { color: #009999; }
code .fl { color: #009999; }
code .ch { color: #009999; }
code .st { color: #183691; }
code .co { color: #969896; }
code .ot { color: #0086b3; }
code .al { color: #a61717; }
code .fu { color: #63a35c; }
code .er { color: #a61717; background-color: #e3d2d2; }
code .wa { color: #000000; }
code .cn { color: #008080; }
code .sc { color: #008080; }
code .vs { color: #183691; }
code .ss { color: #183691; }
code .im { color: #000000; }
code .va {color: #008080; }
code .cf { color: #000000; }
code .op { color: #000000; }
code .bu { color: #000000; }
code .ex { color: #000000; }
code .pp { color: #999999; }
code .at { color: #008080; }
code .do { color: #969896; }
code .an { color: #008080; }
code .cv { color: #008080; }
code .in { color: #008080; }
</style>
<style>
body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
padding-top: 0px;
}
</style>
</head>
<body>
<h1 id="hoovs-high-dimensional-ordinal-outcome-variable-selection">HOOVS: High Dimensional Ordinal Outcome Variable Selection</h1>
<p>Ben Bodek, Brian Chen, Forrest Hurley, Brian Richardson, Emmanuel Rockwell</p>
<h2 id="description">Description</h2>
<p>The <code>HOOVS</code> package (“High-Dimensional Ordinal Outcome Variable Selection”) is for a group project for Bios 735 (statistical computing). The goal of the project is to develop two methods to perform variable selection on a high-dimensional data set with an ordinal outcome. The first method is a LASSO-penalized ordinal regression model and the second is a random forest model.</p>
<h2 id="installation">Installation</h2>
<p>Installation of the <code>HOOVS</code> from GitHub requires the <a href="https://www.r-project.org/nosvn/pandoc/devtools.html"><code>devtools</code></a> package and can be done in the following way.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true"></a><span class="co"># Install the package</span></span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true"></a>devtools<span class="op">::</span><span class="kw">install_github</span>(<span class="st">"brian-d-richardson/HOOVS"</span>)</span></code></pre></div>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true"></a><span class="co"># Then load it</span></span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true"></a><span class="kw">library</span>(HOOVS)</span></code></pre></div>
<p>Other packages used in this README can be loaded in the following chunk.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true"></a></span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true"></a><span class="kw">suppressPackageStartupMessages</span>(<span class="cf">if</span> (<span class="op">!</span><span class="kw">require</span>(dplyr)) {<span class="kw">install.packages</span>(<span class="st">"dplyr"</span>)})</span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true"></a><span class="kw">suppressPackageStartupMessages</span>(<span class="cf">if</span> (<span class="op">!</span><span class="kw">require</span>(tidyr)) {<span class="kw">install.packages</span>(<span class="st">"tidyr"</span>)})</span>
<span id="cb3-4"><a href="#cb3-4" aria-hidden="true"></a><span class="kw">suppressPackageStartupMessages</span>(<span class="cf">if</span> (<span class="op">!</span><span class="kw">require</span>(ggplot2)) {<span class="kw">install.packages</span>(<span class="st">"ggplot2"</span>)})</span>
<span id="cb3-5"><a href="#cb3-5" aria-hidden="true"></a><span class="kw">suppressPackageStartupMessages</span>(<span class="cf">if</span> (<span class="op">!</span><span class="kw">require</span>(ordinalNet)) {<span class="kw">install.packages</span>(<span class="st">"ordinalNet"</span>)})</span>
<span id="cb3-6"><a href="#cb3-6" aria-hidden="true"></a><span class="kw">suppressPackageStartupMessages</span>(<span class="cf">if</span> (<span class="op">!</span><span class="kw">require</span>(foreign)) {<span class="kw">install.packages</span>(<span class="st">"foreign"</span>)})</span>
<span id="cb3-7"><a href="#cb3-7" aria-hidden="true"></a><span class="kw">suppressPackageStartupMessages</span>(<span class="cf">if</span> (<span class="op">!</span><span class="kw">require</span>(devtools)) {<span class="kw">install.packages</span>(<span class="st">"devtools"</span>)})</span>
<span id="cb3-8"><a href="#cb3-8" aria-hidden="true"></a><span class="kw">suppressPackageStartupMessages</span>(<span class="cf">if</span> (<span class="op">!</span><span class="kw">require</span>(tictoc)) {<span class="kw">install.packages</span>(<span class="st">"tictoc"</span>)})</span>
<span id="cb3-9"><a href="#cb3-9" aria-hidden="true"></a><span class="kw">suppressPackageStartupMessages</span>(<span class="cf">if</span> (<span class="op">!</span><span class="kw">require</span>(psych)) {<span class="kw">install.packages</span>(<span class="st">"psych"</span>)})</span>
<span id="cb3-10"><a href="#cb3-10" aria-hidden="true"></a></span>
<span id="cb3-11"><a href="#cb3-11" aria-hidden="true"></a><span class="kw">load_all</span>()</span>
<span id="cb3-12"><a href="#cb3-12" aria-hidden="true"></a><span class="co">#> ℹ Loading HOOVS</span></span>
<span id="cb3-13"><a href="#cb3-13" aria-hidden="true"></a></span>
<span id="cb3-14"><a href="#cb3-14" aria-hidden="true"></a><span class="co">#For reproducibility</span></span>
<span id="cb3-15"><a href="#cb3-15" aria-hidden="true"></a><span class="kw">set.seed</span>(<span class="dv">1</span>)</span></code></pre></div>
<p>To build the final report document render <code>final_presentation.Rmd</code>.</p>
<h1 id="method-1-lasso-penalized-ordinal-regression-model">Method 1: LASSO-Penalized Ordinal Regression Model</h1>
<p>We begin with a theoretical introduction of the ordinal regression model and how the <code>HOOVS</code> package calculates parameter estimates.</p>
<h2 id="ordinal-regression-model-setup">Ordinal Regression Model Setup</h2>
<p>Suppose that, for observation <img src="" title="i = 1, \dots, n" alt="i = 1, \dots, n" />, the ordinal outcome <img src="" title="Y_i" alt="Y_i" /> given the covariate vector <img src="" title="\pmb{x}_i" alt="\pmb{x}_i" /> has a multinomial distribution with <img src="" title="J" alt="J" /> outcome categories and probabilities of success <img src="" title="\pi_1(\pmb{x}_i), \dots, \pi_J(\pmb{x}_i)" alt="\pi_1(\pmb{x}_i), \dots, \pi_J(\pmb{x}_i)" />. That is,</p>
<p><img src="" title="Y_i | \pmb{x}_i \sim \text{multinomial} \{ 1; \pi_1(\pmb{x}_i), \dots, \pi_J(\pmb{x}_i) \}." alt="Y_i | \pmb{x}_i \sim \text{multinomial} \{ 1; \pi_1(\pmb{x}_i), \dots, \pi_J(\pmb{x}_i) \}." /></p>
<p>The cumulative probability for subject <img src="" title="i" alt="i" /> and ordinal outcome category <img src="" title="j" alt="j" /> is <img src="" title="P(Y_i \leq j | \pmb{x}_i) = \sum_{k=1}^j \pi_k(\pmb{x}_i)" alt="P(Y_i \leq j | \pmb{x}_i) = \sum_{k=1}^j \pi_k(\pmb{x}_i)" />. Note that by definition <img src="" title="P(Y_i \leq J | \pmb{x}_i) = 1" alt="P(Y_i \leq J | \pmb{x}_i) = 1" />.</p>
<p>The following proportional odds model relates the cumulative probability for subject <img src="" title="i" alt="i" /> and ordinal outcome category <img src="" title="j" alt="j" /> to the covariates <img src="" title="\pmb{x}_i" alt="\pmb{x}_i" /> via the parameters <img src="" title="\pmb{\alpha} = (\alpha_1, \dots, \alpha_{J-1})^T" alt="\pmb{\alpha} = (\alpha_1, \dots, \alpha_{J-1})^T" /> and <img src="" title="\pmb{\beta} = (\beta_1, \dots, \beta_p)^T" alt="\pmb{\beta} = (\beta_1, \dots, \beta_p)^T" /> with a logit link function.</p>
<p><img src="" title=" \text{logit}\{ P(Y_i \leq j | \pmb{x}_i) \} = \alpha_j + \pmb{x}_i^T \pmb{\beta}. " alt=" \text{logit}\{ P(Y_i \leq j | \pmb{x}_i) \} = \alpha_j + \pmb{x}_i^T \pmb{\beta}. " /></p>
<p>In this model, <img src="" title="\alpha_1, \dots, \alpha_{J-1}" alt="\alpha_1, \dots, \alpha_{J-1}" /> are outcome category-specific intercepts for the first <img src="" title="J-1" alt="J-1" /> ordinal outcome categories and <img src="" title="\beta_1, \dots, \beta_p" alt="\beta_1, \dots, \beta_p" /> are the slopes corresponding to the <img src="" title="p" alt="p" /> covariates. Since the cumulative probabilities must be increasing in <img src="" title="j" alt="j" />, i.e., <img src="" title="P(Y_i \leq j | \pmb{x}_i) < P(Y_i \leq j+1 | \pmb{x}_i)" alt="P(Y_i \leq j | \pmb{x}_i) < P(Y_i \leq j+1 | \pmb{x}_i)" />, we require that <img src="" title="\alpha_1 < \dots < \alpha_{J-1}" alt="\alpha_1 < \dots < \alpha_{J-1}" />.</p>
<p>The likelihood function for the ordinal regression model is</p>
<p><img src="" title=" L_n(\pmb{\alpha}, \pmb{\beta}) = \prod_{i=1}^n \prod_{j=1}^J \left\{ \text{logit}^{-1}(\alpha_j + \pmb{x}_i^T\pmb{\beta}) - \text{logit}^{-1}(\alpha_{j-1} + \pmb{x}_i^T\pmb{\beta} ) \right\} ^ {_(y_i = j)}. " alt=" L_n(\pmb{\alpha}, \pmb{\beta}) = \prod_{i=1}^n \prod_{j=1}^J \left\{ \text{logit}^{-1}(\alpha_j + \pmb{x}_i^T\pmb{\beta}) - \text{logit}^{-1}(\alpha_{j-1} + \pmb{x}_i^T\pmb{\beta} ) \right\} ^ {_(y_i = j)}. " /></p>
<h2 id="lasso-penalization">LASSO Penalization</h2>
<p>Let <img src="" title="l(\pmb{\alpha}, \pmb{\beta}) = \frac{-1}{n} \log L(\pmb{\alpha}, \pmb{\beta})" alt="l(\pmb{\alpha}, \pmb{\beta}) = \frac{-1}{n} \log L(\pmb{\alpha}, \pmb{\beta})" /> be the standardized log-likelihood.</p>
<p>The LASSO-penalized ordinal regression model is fit by minimizing the following objective function with respect to <img src="" title="\pmb{\alpha}" alt="\pmb{\alpha}" /> and <img src="" title="\pmb{\beta}" alt="\pmb{\beta}" />.</p>
<p><img src="" title=" f(\pmb{\alpha}, \pmb{\beta}) = l(\pmb{\alpha}, \pmb{\beta}) + \lambda\sum_{j=1}^p|\beta_j|. " alt=" f(\pmb{\alpha}, \pmb{\beta}) = l(\pmb{\alpha}, \pmb{\beta}) + \lambda\sum_{j=1}^p|\beta_j|. " /></p>
<h2 id="proximal-gradient-descent-algorithm">Proximal Gradient Descent Algorithm</h2>
<p>The objective function can be minimized using a proximal gradient descent (PGD) algorithm.</p>
<p>Fix the following initial parameters for the PGD algorithm: <img src="" title="m > 0" alt="m > 0" /> (the initial step size), <img src="" title="a \in (0, 1)" alt="a \in (0, 1)" /> (the step size decrement value), and <img src="" title="\epsilon > 0" alt="\epsilon > 0" /> (the convergence criterion).</p>
<p>The proximal projection operator for the LASSO penalty (applied to <img src="" title="\pmb{\beta}" alt="\pmb{\beta}" /> but not to <img src="" title="\pmb{\alpha}" alt="\pmb{\alpha}" />) is</p>
<p><img src="" title=" \text{prox}_{\lambda m}(\pmb{w}, \pmb{z}) = \text{argmin}_{\pmb{\alpha}, \pmb{\beta}} \frac{1}{2m} \left(||\pmb{w} - \pmb{\alpha} ||_2^2 + ||\pmb{z} - \pmb{\beta} ||_2^2 \right) + \lambda\sum_{j=1}^p|\beta_j| = \left\{ \pmb{w}, \text{sign}(\pmb{z})(\pmb{z} - m \lambda)_+ \right\} " alt=" \text{prox}_{\lambda m}(\pmb{w}, \pmb{z}) = \text{argmin}_{\pmb{\alpha}, \pmb{\beta}} \frac{1}{2m} \left(||\pmb{w} - \pmb{\alpha} ||_2^2 + ||\pmb{z} - \pmb{\beta} ||_2^2 \right) + \lambda\sum_{j=1}^p|\beta_j| = \left\{ \pmb{w}, \text{sign}(\pmb{z})(\pmb{z} - m \lambda)_+ \right\} " /></p>
<p>Given current estimates <img src="" title="\pmb{\theta}^{(k)} = (\pmb{\alpha}^{(k)}, \pmb{\beta}^{(k)})^T" alt="\pmb{\theta}^{(k)} = (\pmb{\alpha}^{(k)}, \pmb{\beta}^{(k)})^T" />, search for updated estimates <img src="" title="\pmb{\theta}^{(k+1)}" alt="\pmb{\theta}^{(k+1)}" /> by following the steps:</p>
<ol>
<li><p>propose a candidate update <img src="" title="\pmb{\theta} = \text{prox}_{\lambda m}\left\{\pmb{\theta}^{(k)} - \frac{1}{m} \nabla l(\pmb{\theta}^{(k)})\right\}" alt="\pmb{\theta} = \text{prox}_{\lambda m}\left\{\pmb{\theta}^{(k)} - \frac{1}{m} \nabla l(\pmb{\theta}^{(k)})\right\}" />,</p></li>
<li><p>if the condition <img src="" title="l(\pmb{\theta}) \leq l(\pmb{\theta}^{(k)}) + \nabla l(\pmb{\theta}^{(k)})^T(\pmb{\theta} - \pmb{\theta}^{(k)}) + \frac{1}{2m} (\pmb{\theta} - \pmb{\theta}^{(k)})^T (\pmb{\theta} - \pmb{\theta}^{(k)})" alt="l(\pmb{\theta}) \leq l(\pmb{\theta}^{(k)}) + \nabla l(\pmb{\theta}^{(k)})^T(\pmb{\theta} - \pmb{\theta}^{(k)}) + \frac{1}{2m} (\pmb{\theta} - \pmb{\theta}^{(k)})^T (\pmb{\theta} - \pmb{\theta}^{(k)})" /> is met, then make the the update <img src="" title="\pmb{\theta}^{(k+1)} = \pmb{\theta}" alt="\pmb{\theta}^{(k+1)} = \pmb{\theta}" />,</p></li>
<li><p>else decrement the step size <img src="" title="m = am" alt="m = am" /> and returning to step 2.</p></li>
</ol>
<p>Continue updating <img src="" title="\pmb{\theta}^{(k)}" alt="\pmb{\theta}^{(k)}" /> until convergence, i.e., until <img src="" title="\left|\frac{f(\pmb{\theta}^{(k+1)}) - f(\pmb{\theta}^{(k)})}{f(\pmb{\theta}^{(k)})}\right| < \epsilon" alt="\left|\frac{f(\pmb{\theta}^{(k+1)}) - f(\pmb{\theta}^{(k)})}{f(\pmb{\theta}^{(k)})}\right| < \epsilon" />.</p>
<h1 id="a-technical-note-is-that-the-pmbalpha-parameters-are-constrained-by-alpha_1--dots--alpha_j-1-we-can-reparametrize-the-model-with-pmbzeta--zeta_1-dots-zeta_j-1t-where-zeta_1">A technical note is that the <img src="" title="\pmb{\alpha}" alt="\pmb{\alpha}" /> parameters are constrained by <img src="" title="\alpha_1 < \dots < \alpha_{J-1}" alt="\alpha_1 < \dots < \alpha_{J-1}" />. We can reparametrize the model with <img src="" title="\pmb{\zeta} = (\zeta_1, \dots, \zeta_{J-1})^T" alt="\pmb{\zeta} = (\zeta_1, \dots, \zeta_{J-1})^T" />, where  and <img src="" title="\zeta_j = \log(\alpha_j - \alpha_{j-1})" alt="\zeta_j = \log(\alpha_j - \alpha_{j-1})" /> for <img src="" title="j = 2, \dots, J-1" alt="j = 2, \dots, J-1" />. Then <img src="" title="\pmb{\zeta} \in \mathbb{R}^{J-1}" alt="\pmb{\zeta} \in \mathbb{R}^{J-1}" /> have no constraints. So we can follow the above procedure to minimize the above objective function with respect to <img src="" title="\pmb{\zeta}" alt="\pmb{\zeta}" /> and <img src="" title="\pmb{\beta}" alt="\pmb{\beta}" />, then back-transform to obtain estimates for <img src="" title="\pmb{\alpha}" alt="\pmb{\alpha}" />.</p>
<h2 id="data-generation">Data Generation</h2>
<p>The <code>HOOVS</code> package allows the user to simulate their own data with the <code>simulate.data()</code> function. For <img src="" title="n" alt="n" /> subjects, we generate <img src="" title="p" alt="p" /> covariates from independent standard normal distributions[1]. Given true parameters <img src="" title="\pmb{\alpha}_0" alt="\pmb{\alpha}_0" /> and <img src="" title="\pmb{\beta}_0" alt="\pmb{\beta}_0" />, we compute the multinomial probabilities for the outcome for each individual and simulate <img src="" title="y_i" alt="y_i" /> accordingly.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true"></a></span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true"></a><span class="co"># sample size</span></span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true"></a>n <-<span class="st"> </span><span class="dv">1000</span></span>
<span id="cb4-4"><a href="#cb4-4" aria-hidden="true"></a></span>
<span id="cb4-5"><a href="#cb4-5" aria-hidden="true"></a><span class="co"># number of covariates</span></span>
<span id="cb4-6"><a href="#cb4-6" aria-hidden="true"></a>p <-<span class="st"> </span><span class="dv">50</span></span>
<span id="cb4-7"><a href="#cb4-7" aria-hidden="true"></a></span>
<span id="cb4-8"><a href="#cb4-8" aria-hidden="true"></a><span class="co"># number of categories for ordinal outcome</span></span>
<span id="cb4-9"><a href="#cb4-9" aria-hidden="true"></a>J <-<span class="st"> </span><span class="dv">4</span></span>
<span id="cb4-10"><a href="#cb4-10" aria-hidden="true"></a></span>
<span id="cb4-11"><a href="#cb4-11" aria-hidden="true"></a><span class="co"># grid of lambdas</span></span>
<span id="cb4-12"><a href="#cb4-12" aria-hidden="true"></a>lambdas <-<span class="st"> </span><span class="kw">seq</span>(<span class="fl">0.2</span>, <span class="dv">0</span>, <span class="fl">-0.02</span>)</span>
<span id="cb4-13"><a href="#cb4-13" aria-hidden="true"></a></span>
<span id="cb4-14"><a href="#cb4-14" aria-hidden="true"></a><span class="co"># set population parameters</span></span>
<span id="cb4-15"><a href="#cb4-15" aria-hidden="true"></a>alpha <-<span class="st"> </span><span class="kw">seq</span>(.<span class="dv">5</span>, <span class="dv">4</span>, <span class="dt">length =</span> J <span class="op">-</span><span class="st"> </span><span class="dv">1</span>) <span class="co"># category-specific intercepts</span></span>
<span id="cb4-16"><a href="#cb4-16" aria-hidden="true"></a>beta <-<span class="st"> </span><span class="kw">rep</span>(<span class="dv">0</span>, p) <span class="co"># slope parameters</span></span>
<span id="cb4-17"><a href="#cb4-17" aria-hidden="true"></a>beta[<span class="dv">1</span><span class="op">:</span><span class="st"> </span><span class="kw">floor</span>(p <span class="op">/</span><span class="st"> </span><span class="dv">2</span>)] <-<span class="st"> </span><span class="dv">1</span> <span class="co"># half of the betas are 0, other half are 1</span></span>
<span id="cb4-18"><a href="#cb4-18" aria-hidden="true"></a></span>
<span id="cb4-19"><a href="#cb4-19" aria-hidden="true"></a><span class="co"># simulate data according to the above parameters</span></span>
<span id="cb4-20"><a href="#cb4-20" aria-hidden="true"></a>dat <-<span class="st"> </span><span class="kw">simulate.data</span>(</span>
<span id="cb4-21"><a href="#cb4-21" aria-hidden="true"></a> <span class="dt">n =</span> <span class="dv">1000</span>,</span>
<span id="cb4-22"><a href="#cb4-22" aria-hidden="true"></a> <span class="dt">alpha =</span> alpha,</span>
<span id="cb4-23"><a href="#cb4-23" aria-hidden="true"></a> <span class="dt">beta =</span> beta)</span></code></pre></div>
<p>For this example, we simulated data with <img src="" title="n" alt="n" /> = 1000 observations, <img src="" title="p" alt="p" /> = 50 covariates, <img src="" title="J" alt="J" /> = 4 ordinal outcome categories, and true parameter values of <img src="" title="\pmb{\alpha}_0" alt="\pmb{\alpha}_0" /> = (0.5, 2.25, 4) and <img src="" title="\pmb{\beta}_0" alt="\pmb{\beta}_0" /> = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Note that this implies the first half of the covariates are truly associated with the outcome and the last half are not. The first 10 rows and 10 columns of the data set are shown below.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true"></a></span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true"></a>dat[<span class="dv">1</span><span class="op">:</span><span class="dv">10</span>, <span class="dv">1</span><span class="op">:</span><span class="dv">10</span>] <span class="op">%>%</span><span class="st"> </span></span>
<span id="cb5-3"><a href="#cb5-3" aria-hidden="true"></a><span class="st"> </span><span class="kw">mutate_if</span>(<span class="dt">.predicate =</span> <span class="cf">function</span>(x) <span class="kw">is.numeric</span>(x),</span>
<span id="cb5-4"><a href="#cb5-4" aria-hidden="true"></a> <span class="dt">.funs =</span> <span class="cf">function</span>(x) <span class="kw">round</span>(x, <span class="dt">digits =</span> <span class="dv">2</span>))</span>
<span id="cb5-5"><a href="#cb5-5" aria-hidden="true"></a><span class="co">#> y X1 X2 X3 X4 X5 X6 X7 X8 X9</span></span>
<span id="cb5-6"><a href="#cb5-6" aria-hidden="true"></a><span class="co">#> 1 3 -0.63 1.13 -0.89 0.74 -1.13 -1.52 -0.62 -1.33 0.26</span></span>
<span id="cb5-7"><a href="#cb5-7" aria-hidden="true"></a><span class="co">#> 2 3 0.18 1.11 -1.92 0.39 0.76 0.63 -1.11 0.95 -0.83</span></span>
<span id="cb5-8"><a href="#cb5-8" aria-hidden="true"></a><span class="co">#> 3 3 -0.84 -0.87 1.62 1.30 0.57 -1.68 -2.17 0.86 -1.46</span></span>
<span id="cb5-9"><a href="#cb5-9" aria-hidden="true"></a><span class="co">#> 4 2 1.60 0.21 0.52 -0.80 -1.35 1.18 -0.03 1.06 1.68</span></span>
<span id="cb5-10"><a href="#cb5-10" aria-hidden="true"></a><span class="co">#> 5 4 0.33 0.07 -0.06 -1.60 -2.03 1.12 -0.26 -0.35 -1.54</span></span>
<span id="cb5-11"><a href="#cb5-11" aria-hidden="true"></a><span class="co">#> 6 1 -0.82 -1.66 0.70 0.93 0.59 -1.24 0.53 -0.13 -0.19</span></span>
<span id="cb5-12"><a href="#cb5-12" aria-hidden="true"></a><span class="co">#> 7 3 0.49 0.81 0.05 1.81 -1.41 -1.23 -0.56 0.76 1.02</span></span>
<span id="cb5-13"><a href="#cb5-13" aria-hidden="true"></a><span class="co">#> 8 1 0.74 -1.91 -1.31 -0.06 1.61 0.60 1.61 -0.49 0.55</span></span>
<span id="cb5-14"><a href="#cb5-14" aria-hidden="true"></a><span class="co">#> 9 1 0.58 -1.25 -2.12 1.89 1.84 0.30 0.56 1.11 0.76</span></span>
<span id="cb5-15"><a href="#cb5-15" aria-hidden="true"></a><span class="co">#> 10 1 -0.31 1.00 -0.21 1.58 1.37 -0.11 0.19 1.46 -0.42</span></span></code></pre></div>
<h2 id="fitting-penalized-model">Fitting Penalized Model</h2>
<p>Now run our version of a LASSO-penalized ordinal regression function on the simulated data for various values of <img src="" title="\lambda" alt="\lambda" />: 0.2, 0.18, 0.16, 0.14, 0.12, 0.1, 0.08, 0.06, 0.04, 0.02, 0.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true"></a></span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true"></a><span class="co"># test HOOVS LASSO-penalized ordinal regression function</span></span>
<span id="cb6-3"><a href="#cb6-3" aria-hidden="true"></a><span class="kw">tic</span>(<span class="st">"HOOVS ordreg.lasso() function"</span>)</span>
<span id="cb6-4"><a href="#cb6-4" aria-hidden="true"></a>res.ordreg <-<span class="st"> </span><span class="kw">ordreg.lasso</span>(</span>
<span id="cb6-5"><a href="#cb6-5" aria-hidden="true"></a> <span class="dt">formula =</span> y <span class="op">~</span><span class="st"> </span>.,</span>
<span id="cb6-6"><a href="#cb6-6" aria-hidden="true"></a> <span class="dt">data =</span> dat,</span>
<span id="cb6-7"><a href="#cb6-7" aria-hidden="true"></a> <span class="dt">lambdas =</span> lambdas</span>
<span id="cb6-8"><a href="#cb6-8" aria-hidden="true"></a>)</span>
<span id="cb6-9"><a href="#cb6-9" aria-hidden="true"></a><span class="kw">toc</span>()</span>
<span id="cb6-10"><a href="#cb6-10" aria-hidden="true"></a><span class="co">#> HOOVS ordreg.lasso() function: 5.943 sec elapsed</span></span>
<span id="cb6-11"><a href="#cb6-11" aria-hidden="true"></a></span>
<span id="cb6-12"><a href="#cb6-12" aria-hidden="true"></a>coef.ordreg <-<span class="st"> </span><span class="kw">cbind</span>(res.ordreg<span class="op">$</span>alpha, res.ordreg<span class="op">$</span>beta)</span></code></pre></div>
<p>We can now look at how the parameter estimates from our funciton change as the penalty parameter <img src="" title="\lambda" alt="\lambda" /> changes</p>
<p><img src="" /><!-- --></p>
<p>Note in the above plot that the <img src="" title="\pmb{\alpha}" alt="\pmb{\alpha}" /> estimates do not shrink all the way to 0 since they are not penalized in the LASSO model. On the other hand, the <img src="" title="\pmb{\beta}" alt="\pmb{\beta}" /> estimates do shrink to 0 as <img src="" title="\lambda" alt="\lambda" /> increases. Recall that the data were simulated according to a model where half of the <img src="" title="\pmb{\beta}" alt="\pmb{\beta}" /> values are truly 0 and the other half are truly 1. It is clear in the above plot which covariates are truly not associated with the outcome based on how fast their corresponding parameter estimates shrink to 0.</p>
<h2 id="assessing-prediction-with-weighted-kappa">Assessing Prediction with Weighted Kappa</h2>
<p>We can assess the predictive performance of the model with a weighted kappa statistic. The following table gives the weighted kappa values for the models fit using each supplied penalty parameter <img src="" title="\lambda" alt="\lambda" />.</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true"></a></span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true"></a><span class="kw">data.frame</span>(<span class="st">"lambda"</span> =<span class="st"> </span>lambdas,</span>
<span id="cb7-3"><a href="#cb7-3" aria-hidden="true"></a> <span class="st">"Weighted Kappa"</span> =<span class="st"> </span>res.ordreg<span class="op">$</span>kappa)</span>
<span id="cb7-4"><a href="#cb7-4" aria-hidden="true"></a><span class="co">#> lambda Weighted.Kappa</span></span>
<span id="cb7-5"><a href="#cb7-5" aria-hidden="true"></a><span class="co">#> lambda=0.2 0.20 0.00000000</span></span>
<span id="cb7-6"><a href="#cb7-6" aria-hidden="true"></a><span class="co">#> lambda=0.18 0.18 0.00000000</span></span>
<span id="cb7-7"><a href="#cb7-7" aria-hidden="true"></a><span class="co">#> lambda=0.16 0.16 0.00000000</span></span>
<span id="cb7-8"><a href="#cb7-8" aria-hidden="true"></a><span class="co">#> lambda=0.14 0.14 0.00000000</span></span>
<span id="cb7-9"><a href="#cb7-9" aria-hidden="true"></a><span class="co">#> lambda=0.12 0.12 0.00000000</span></span>
<span id="cb7-10"><a href="#cb7-10" aria-hidden="true"></a><span class="co">#> lambda=0.1 0.10 0.00000000</span></span>
<span id="cb7-11"><a href="#cb7-11" aria-hidden="true"></a><span class="co">#> lambda=0.08 0.08 0.02319807</span></span>
<span id="cb7-12"><a href="#cb7-12" aria-hidden="true"></a><span class="co">#> lambda=0.06 0.06 0.44565785</span></span>
<span id="cb7-13"><a href="#cb7-13" aria-hidden="true"></a><span class="co">#> lambda=0.04 0.04 0.72450154</span></span>
<span id="cb7-14"><a href="#cb7-14" aria-hidden="true"></a><span class="co">#> lambda=0.02 0.02 0.83576007</span></span>
<span id="cb7-15"><a href="#cb7-15" aria-hidden="true"></a><span class="co">#> lambda=0 0.00 0.90220833</span></span></code></pre></div>
<h2 id="inference">Inference</h2>
<p>Suppose we have identified a subset of relevant predictors and want to perform inference or hypothesis testing using an independent test data set. We obtain the asymptotic covariance of the parameter estimates from an ordinal regression model fit with no LASSO penalty by specifying <code>return.cov = TRUE</code>. Then the standard errors of the parameter estimates are the square roots of the diagonal entries of the covariance matrix.</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true"></a></span>
<span id="cb8-2"><a href="#cb8-2" aria-hidden="true"></a><span class="co"># simulate test data</span></span>
<span id="cb8-3"><a href="#cb8-3" aria-hidden="true"></a>dat <-<span class="st"> </span><span class="kw">simulate.data</span>(</span>
<span id="cb8-4"><a href="#cb8-4" aria-hidden="true"></a> <span class="dt">n =</span> <span class="dv">500</span>,</span>
<span id="cb8-5"><a href="#cb8-5" aria-hidden="true"></a> <span class="dt">alpha =</span> alpha,</span>
<span id="cb8-6"><a href="#cb8-6" aria-hidden="true"></a> <span class="dt">beta =</span> beta)</span>
<span id="cb8-7"><a href="#cb8-7" aria-hidden="true"></a></span>
<span id="cb8-8"><a href="#cb8-8" aria-hidden="true"></a><span class="co"># specify relevant parameters</span></span>
<span id="cb8-9"><a href="#cb8-9" aria-hidden="true"></a><span class="co"># (in practice these would be selected using training data)</span></span>
<span id="cb8-10"><a href="#cb8-10" aria-hidden="true"></a>rel.betas.ind <-<span class="st"> </span><span class="kw">which</span>(beta <span class="op">!=</span><span class="st"> </span><span class="dv">0</span>)</span>
<span id="cb8-11"><a href="#cb8-11" aria-hidden="true"></a></span>
<span id="cb8-12"><a href="#cb8-12" aria-hidden="true"></a><span class="co"># fit model with no penalty</span></span>
<span id="cb8-13"><a href="#cb8-13" aria-hidden="true"></a>res.ordreg.test <-<span class="st"> </span><span class="kw">ordreg.lasso</span>(</span>
<span id="cb8-14"><a href="#cb8-14" aria-hidden="true"></a> <span class="dt">formula =</span> y <span class="op">~</span><span class="st"> </span>.,</span>
<span id="cb8-15"><a href="#cb8-15" aria-hidden="true"></a> <span class="dt">data =</span> <span class="kw">select</span>(dat, <span class="kw">c</span>(<span class="st">"y"</span>, <span class="kw">paste0</span>(<span class="st">"X"</span>, rel.betas.ind))),</span>
<span id="cb8-16"><a href="#cb8-16" aria-hidden="true"></a> <span class="dt">lambdas =</span> <span class="dv">0</span>,</span>
<span id="cb8-17"><a href="#cb8-17" aria-hidden="true"></a> <span class="dt">return.cov =</span> T</span>
<span id="cb8-18"><a href="#cb8-18" aria-hidden="true"></a>)</span>
<span id="cb8-19"><a href="#cb8-19" aria-hidden="true"></a></span>
<span id="cb8-20"><a href="#cb8-20" aria-hidden="true"></a><span class="co"># covariance matrix</span></span>
<span id="cb8-21"><a href="#cb8-21" aria-hidden="true"></a><span class="co">#res.ordreg.test$cov</span></span>
<span id="cb8-22"><a href="#cb8-22" aria-hidden="true"></a></span>
<span id="cb8-23"><a href="#cb8-23" aria-hidden="true"></a><span class="co"># standard error of parameter estimates</span></span>
<span id="cb8-24"><a href="#cb8-24" aria-hidden="true"></a><span class="kw">sqrt</span>(<span class="kw">diag</span>(res.ordreg.test<span class="op">$</span>cov))</span>
<span id="cb8-25"><a href="#cb8-25" aria-hidden="true"></a><span class="co">#> alpha1 alpha2 alpha3 X1 X2 X3 X4 X5 </span></span>
<span id="cb8-26"><a href="#cb8-26" aria-hidden="true"></a><span class="co">#> 0.1885505 0.2302522 0.3188871 0.1518158 0.1493560 0.1437412 0.1492866 0.1425663 </span></span>
<span id="cb8-27"><a href="#cb8-27" aria-hidden="true"></a><span class="co">#> X6 X7 X8 X9 X10 X11 X12 X13 </span></span>
<span id="cb8-28"><a href="#cb8-28" aria-hidden="true"></a><span class="co">#> 0.1532874 0.1598190 0.1501358 0.1533953 0.1471709 0.1463651 0.1503864 0.1473245 </span></span>
<span id="cb8-29"><a href="#cb8-29" aria-hidden="true"></a><span class="co">#> X14 X15 X16 X17 X18 X19 X20 X21 </span></span>
<span id="cb8-30"><a href="#cb8-30" aria-hidden="true"></a><span class="co">#> 0.1385858 0.1596688 0.1555481 0.1417651 0.1514717 0.1404234 0.1415255 0.1427013 </span></span>
<span id="cb8-31"><a href="#cb8-31" aria-hidden="true"></a><span class="co">#> X22 X23 X24 X25 </span></span>
<span id="cb8-32"><a href="#cb8-32" aria-hidden="true"></a><span class="co">#> 0.1532489 0.1518607 0.1467264 0.1558101</span></span></code></pre></div>
<h1 id="method-2-random-forest">Method 2: Random Forest</h1>
<ol>
<li>the current version can only handle continuous covariates, and categorical variables must be created into dummy variables by hand.</li>
</ol>
</body>
</html>