-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathordreg_lasso_real_data.Rmd
226 lines (162 loc) · 6.3 KB
/
ordreg_lasso_real_data.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
---
title: 'Real Data Analysis: Ordinal Regression LASSO'
author: "Brian Chen"
output: html_document
date: "`r format(Sys.time(), '%m/%d/%Y')`"
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(data.table)
library(devtools)
library(caret)
library(dplyr)
library(tictoc)
library(psych)
library(cvms)
load_all()
```
# Read in Data and Preprocess Data for Lasso
```{r read_scale}
#Read in Data
data <- fread('processed_data.csv')
#Create Key to make ordered factor and rename
#Reverse order to make interpretation easier
y_factor_key <- data.frame(original = sort(unique(data$`B1:SATISFACTION W/LIFE`), decreasing = F),
y = ordered(1:5))
#factor(1:length(unique(data$`B1:SATISFACTION W/LIFE`)), ordered = T )
#Merge and drop Case ID
data_ordered_y <- merge(y_factor_key, data, by.x = "original", by.y = "B1:SATISFACTION W/LIFE") %>%
arrange(`W1 Case Id`) %>%
select(-c("original", "W1 Case Id"))
#Scale data for LASSO
data_ordered_y_scaled <- data_ordered_y
data_ordered_y_scaled[,2:199] <- as.data.frame(scale(data_ordered_y[,2:199]))
```
# Create Training and held out data / folds within training data for CV
```{r split_data}
set.seed(5)
#Create training and testing set
train_test_i <- createDataPartition(y = data_ordered_y_scaled$y, p = 0.6, list = F)
data_train <- data_ordered_y_scaled[train_test_i,]
data_heldout <- data_ordered_y_scaled[-train_test_i,]
#Within training set, create folds
k <- 5 #set number of folds
fold_indicies <- createFolds(y = data_train$y, k=k)
```
# K fold cross validation to find best lambda
```{r cv}
lambda_grid <- seq(0.005, 0.05, 0.005)
lambda_info <- list()
for (fold in 1:k){
#Fold Training and testing set
fold_train <- data_train[-fold_indicies[[fold]],]
fold_test <- data_train[fold_indicies[[fold]],]
#Fit Ordinal LASSO
tic(paste0("Fold #", fold))
res.ordreg <- suppressWarnings(ordreg.lasso(
formula = y ~ .,
data = fold_train,
lambdas = lambda_grid
))
toc()
#Vector of Testing Kappas
test_kappas <- rep(NA, length(res.ordreg$lambdas))
#For each value of lambda of the fold, get kappa
for (i in 1:length(res.ordreg$lambdas)){
#Predict
predicted <- ordreg.predict(alpha = res.ordreg$alpha[i,],
beta = res.ordreg$beta[i,],
x = as.matrix(fold_test[,-1]))
#Calculate Kappa
test_kappas[i] <- cohen.kappa(x = matrix(c(fold_test[,1], predicted),
ncol = 2,
byrow = F))$weighted.kappa
}
#Store lambda info
lambda_info[[fold]] <- data.frame(fold = rep(fold, length(res.ordreg$lambdas)),
lambda = res.ordreg$lambdas,
n.nonzero = res.ordreg$n.nonzero,
testing_kappa = test_kappas)
}
```
# Plots to Heruistically Select Lambda
```{r plot_lambda}
lambda_info_df <- do.call("rbind", lambda_info) %>%
mutate(lambda = as.factor(lambda),
fold = as.factor(fold))
lambda_avg <- lambda_info_df %>%
group_by(lambda) %>%
summarise(avg_testing_kappa = mean(testing_kappa),
avg_n.nonzero = mean(n.nonzero))
p1 <- ggplot(lambda_info_df, aes(x = n.nonzero, y = testing_kappa, group = fold)) +
geom_point(aes(color = fold)) +
geom_line(aes(color = fold)) +
labs(title = "No. of Nonzero Parameters vs. Testing Kappa by Fold",
x = "No. of Nonzero Parameters",
y = "Testing Kappa",
color = "Fold")
p2 <- ggplot(data=lambda_avg, aes(x = avg_n.nonzero, y = avg_testing_kappa, label = lambda)) +
geom_line() +
geom_point() +
geom_label(alpha = 0, label.size = NA, nudge_y = 0.003, nudge_x = -5) +
labs(title = "Average No. of Nonzero Parameters vs. Average Testing Kappa across Fold",
x = "Average No. of Nonzero Parameters",
y = "Average Testing Kappa")
print(p1)
print(p2)
```
# Fit LASSO with $\lambda = 0.02$ for variable selection
```{r variable_selection}
#Ordinal regression w/ lambda = 0.02
tic("Variable selection model")
ordreg.vs <- ordreg.lasso(
formula = y ~ .,
data = data_train,
lambdas = 0.02)
toc()
#Column names of nonzero Betas
nonzero_beta <- colnames(data_train[2:199])[ordreg.vs$beta != 0 ]
nonzero_beta
predicted_heldout <- ordreg.predict(alpha = ordreg.vs$alpha[1,],
beta = ordreg.vs$beta[1,],
x = as.matrix(data_heldout[,-1]))
kappa_heldout <- cohen.kappa(x = matrix(c(data_heldout[,1], predicted_heldout),
ncol = 2,
byrow = F))$weighted.kappa
print(paste0("Testing Kappa of the model in held out data is ", round(kappa_heldout, digits = 3)))
# creating and plotting a confusion matrix
# save actual y and predicted y into a tibble
y = data_heldout[,1]
y.pred = predicted_heldout
d_multi<-tibble("target"=y,"prediction"=y.pred)
conf_mat<-confusion_matrix(targets = d_multi$target,
predictions = d_multi$prediction)
plot_confusion_matrix(conf_mat$`Confusion Matrix`[[1]],add_normalized=F)
```
# Fit oridnal regression on held out data with selected variables (no penalty)
```{r held_out_fit}
data_heldout_filter <- data_heldout[,c("y", nonzero_beta)]
tic("Model on Held Out data")
ordreg.final <- ordreg.lasso(
formula = y ~ .,
data = data_heldout_filter,
lambdas = 0,
return.cov = TRUE)
toc()
```
# Testing for significance
```{r inference}
signif_tbl <- data.frame(Question = colnames(data_heldout_filter[-1]),
Estimate = unname(t(ordreg.final$beta)),
SE = unname(sqrt(diag(ordreg.final$cov[5:43,5:43]))))
signif_tbl <- signif_tbl %>%
mutate(tvalue = Estimate / SE) %>%
mutate(p = 2*pt(-abs(tvalue), 1434 - 43 - 1)) %>%
arrange(p)
sum(signif_tbl$p < 0.05)
signif_tbl
```
```{r export, include =FALSE}
#Export workspace so we don't have to rerun analysis for report
#save.image("C:/Users/brian/Documents/Grad School/BIOS 735/HOOVS/ordreg_lasso_real_data.RData")
```