Skip to content

Conversation

@bylickilabs
Copy link
Owner

No description provided.

Copilot AI review requested due to automatic review settings July 25, 2025 08:53
Copy link

Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Pull Request Overview

This PR introduces a new data analysis utility class that provides a comprehensive suite of scientific computing and data analysis capabilities. The implementation creates a single-file solution for common data science tasks including statistical analysis, signal processing, interpolation, and optimization.

  • Implements a DataAnalyzerSuite class with methods for descriptive statistics, FFT analysis, data interpolation, numerical integration, and function optimization
  • Provides CSV file loading with error handling and automatic data processing workflows
  • Creates a main function demonstrating usage of all analysis capabilities with hardcoded sample data

def __init__(self, csv_file):
try:
self.data = pd.read_csv(csv_file)
print(f"Daten erfolgreich aus '{csv_file}' geladen.")
Copy link

Copilot AI Jul 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The success message is in German ('Daten erfolgreich aus...') while other parts of the code use English. Consider using English for consistency: 'Data successfully loaded from {csv_file}'.

Suggested change
print(f"Daten erfolgreich aus '{csv_file}' geladen.")
print(f"Data successfully loaded from '{csv_file}'.")

Copilot uses AI. Check for mistakes.
self.data = pd.read_csv(csv_file)
print(f"Daten erfolgreich aus '{csv_file}' geladen.")
except FileNotFoundError:
print(f"Fehler: Datei '{csv_file}' nicht gefunden!")
Copy link

Copilot AI Jul 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The error message is in German ('Fehler: Datei... nicht gefunden!'). Consider using English for consistency: 'Error: File {csv_file} not found!'.

Suggested change
print(f"Fehler: Datei '{csv_file}' nicht gefunden!")
print(f"Error: File '{csv_file}' not found!")

Copilot uses AI. Check for mistakes.
print(f"Fehler: Datei '{csv_file}' nicht gefunden!")
sys.exit(1)
except Exception as e:
print(f"Fehler beim Laden der Datei: {e}")
Copy link

Copilot AI Jul 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The error message is in German ('Fehler beim Laden der Datei:'). Consider using English for consistency: 'Error loading file: {e}'.

Suggested change
print(f"Fehler beim Laden der Datei: {e}")
print(f"Error loading file: {e}")

Copilot uses AI. Check for mistakes.
def descriptive_statistics(self, column):
col_data = self.data[column].dropna()
desc = stats.describe(col_data)
print(f"Deskriptive Statistik für '{column}':", desc)
Copy link

Copilot AI Jul 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The output message is in German ('Deskriptive Statistik für...'). Consider using English for consistency: 'Descriptive statistics for {column}:'.

Suggested change
print(f"Deskriptive Statistik für '{column}':", desc)
print(f"Descriptive statistics for '{column}':", desc)

Copilot uses AI. Check for mistakes.

def numerical_integration(self, func, a, b):
result, error = integrate.quad(func, a, b)
print(f"Numerische Integration von {a} bis {b} ergibt: {result}")
Copy link

Copilot AI Jul 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The output message is in German ('Numerische Integration von... bis... ergibt:'). Consider using English for consistency: 'Numerical integration from {a} to {b} gives: {result}'.

Suggested change
print(f"Numerische Integration von {a} bis {b} ergibt: {result}")
print(f"Numerical integration from {a} to {b} gives: {result}")

Copilot uses AI. Check for mistakes.
Comment on lines +19 to +24
def descriptive_statistics(self, column):
col_data = self.data[column].dropna()
desc = stats.describe(col_data)
print(f"Deskriptive Statistik für '{column}':", desc)

def perform_fft(self, column, sampling_rate):
Copy link

Copilot AI Jul 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The method doesn't validate if the specified column exists in the DataFrame before accessing it. This could raise a KeyError if an invalid column name is provided.

Suggested change
def descriptive_statistics(self, column):
col_data = self.data[column].dropna()
desc = stats.describe(col_data)
print(f"Deskriptive Statistik für '{column}':", desc)
def perform_fft(self, column, sampling_rate):
def descriptive_statistics(self, column):
if column not in self.data.columns:
raise ValueError(f"Column '{column}' does not exist in the data.")
col_data = self.data[column].dropna()
desc = stats.describe(col_data)
print(f"Deskriptive Statistik für '{column}':", desc)
def perform_fft(self, column, sampling_rate):
if column not in self.data.columns:
raise ValueError(f"Column '{column}' does not exist in the data.")

Copilot uses AI. Check for mistakes.
plt.grid()
plt.show()

def interpolate_missing_data(self, column, method='cubic'):
Copy link

Copilot AI Jul 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The method doesn't validate if the specified column exists in the DataFrame before accessing it. This could raise a KeyError if an invalid column name is provided.

Suggested change
def interpolate_missing_data(self, column, method='cubic'):
def interpolate_missing_data(self, column, method='cubic'):
if column not in self.data.columns:
raise ValueError(f"Column '{column}' does not exist in the DataFrame.")

Copilot uses AI. Check for mistakes.
Comment on lines +34 to +40
def interpolate_missing_data(self, column, method='cubic'):
y = self.data[column]
x = np.arange(len(y))
mask = np.isfinite(y)
interpolator = interpolate.interp1d(x[mask], y[mask], kind=method, fill_value="extrapolate")
y_interp = interpolator(x)
self.data[column+'_interp'] = y_interp
Copy link

Copilot AI Jul 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

[nitpick] String concatenation for column naming could lead to unclear column names. Consider using a more explicit format like f'{column}_interpolated' or allow custom naming through a parameter.

Suggested change
def interpolate_missing_data(self, column, method='cubic'):
y = self.data[column]
x = np.arange(len(y))
mask = np.isfinite(y)
interpolator = interpolate.interp1d(x[mask], y[mask], kind=method, fill_value="extrapolate")
y_interp = interpolator(x)
self.data[column+'_interp'] = y_interp
def interpolate_missing_data(self, column, method='cubic', new_column_name=None):
y = self.data[column]
x = np.arange(len(y))
mask = np.isfinite(y)
interpolator = interpolate.interp1d(x[mask], y[mask], kind=method, fill_value="extrapolate")
y_interp = interpolator(x)
new_column_name = new_column_name or f'{column}_interpolated'
self.data[new_column_name] = y_interp

Copilot uses AI. Check for mistakes.
print("Optimierungsergebnis:", res.x)

def main():
analyzer = DataAnalyzerSuite('sample_data.csv')
Copy link

Copilot AI Jul 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The hardcoded filename 'sample_data.csv' makes the main function inflexible. Consider accepting command line arguments or making the filename configurable.

Suggested change
analyzer = DataAnalyzerSuite('sample_data.csv')
# Check for a command-line argument specifying the filename
csv_file = sys.argv[1] if len(sys.argv) > 1 else 'sample_data.csv'
analyzer = DataAnalyzerSuite(csv_file)

Copilot uses AI. Check for mistakes.
Comment on lines +56 to +59
analyzer = DataAnalyzerSuite('sample_data.csv')
analyzer.descriptive_statistics('value')
analyzer.perform_fft('value', sampling_rate=800)
analyzer.interpolate_missing_data('value', method='cubic')
Copy link

Copilot AI Jul 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The hardcoded column name 'value' assumes a specific data structure. This makes the example less flexible and could fail if the CSV doesn't contain this column.

Suggested change
analyzer = DataAnalyzerSuite('sample_data.csv')
analyzer.descriptive_statistics('value')
analyzer.perform_fft('value', sampling_rate=800)
analyzer.interpolate_missing_data('value', method='cubic')
csv_file = 'sample_data.csv'
column_name = input("Bitte geben Sie den Spaltennamen ein: ")
analyzer = DataAnalyzerSuite(csv_file, column_name)
analyzer.descriptive_statistics(column_name)
analyzer.perform_fft(column_name, sampling_rate=800)
analyzer.interpolate_missing_data(column_name, method='cubic')

Copilot uses AI. Check for mistakes.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants