-
Notifications
You must be signed in to change notification settings - Fork 0
Create data_analyzer_suite.py #2
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Conversation
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Pull Request Overview
This PR introduces a new data analysis utility class that provides a comprehensive suite of scientific computing and data analysis capabilities. The implementation creates a single-file solution for common data science tasks including statistical analysis, signal processing, interpolation, and optimization.
- Implements a DataAnalyzerSuite class with methods for descriptive statistics, FFT analysis, data interpolation, numerical integration, and function optimization
- Provides CSV file loading with error handling and automatic data processing workflows
- Creates a main function demonstrating usage of all analysis capabilities with hardcoded sample data
| def __init__(self, csv_file): | ||
| try: | ||
| self.data = pd.read_csv(csv_file) | ||
| print(f"Daten erfolgreich aus '{csv_file}' geladen.") |
Copilot
AI
Jul 25, 2025
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The success message is in German ('Daten erfolgreich aus...') while other parts of the code use English. Consider using English for consistency: 'Data successfully loaded from {csv_file}'.
| print(f"Daten erfolgreich aus '{csv_file}' geladen.") | |
| print(f"Data successfully loaded from '{csv_file}'.") |
| self.data = pd.read_csv(csv_file) | ||
| print(f"Daten erfolgreich aus '{csv_file}' geladen.") | ||
| except FileNotFoundError: | ||
| print(f"Fehler: Datei '{csv_file}' nicht gefunden!") |
Copilot
AI
Jul 25, 2025
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The error message is in German ('Fehler: Datei... nicht gefunden!'). Consider using English for consistency: 'Error: File {csv_file} not found!'.
| print(f"Fehler: Datei '{csv_file}' nicht gefunden!") | |
| print(f"Error: File '{csv_file}' not found!") |
| print(f"Fehler: Datei '{csv_file}' nicht gefunden!") | ||
| sys.exit(1) | ||
| except Exception as e: | ||
| print(f"Fehler beim Laden der Datei: {e}") |
Copilot
AI
Jul 25, 2025
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The error message is in German ('Fehler beim Laden der Datei:'). Consider using English for consistency: 'Error loading file: {e}'.
| print(f"Fehler beim Laden der Datei: {e}") | |
| print(f"Error loading file: {e}") |
| def descriptive_statistics(self, column): | ||
| col_data = self.data[column].dropna() | ||
| desc = stats.describe(col_data) | ||
| print(f"Deskriptive Statistik für '{column}':", desc) |
Copilot
AI
Jul 25, 2025
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The output message is in German ('Deskriptive Statistik für...'). Consider using English for consistency: 'Descriptive statistics for {column}:'.
| print(f"Deskriptive Statistik für '{column}':", desc) | |
| print(f"Descriptive statistics for '{column}':", desc) |
|
|
||
| def numerical_integration(self, func, a, b): | ||
| result, error = integrate.quad(func, a, b) | ||
| print(f"Numerische Integration von {a} bis {b} ergibt: {result}") |
Copilot
AI
Jul 25, 2025
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The output message is in German ('Numerische Integration von... bis... ergibt:'). Consider using English for consistency: 'Numerical integration from {a} to {b} gives: {result}'.
| print(f"Numerische Integration von {a} bis {b} ergibt: {result}") | |
| print(f"Numerical integration from {a} to {b} gives: {result}") |
| def descriptive_statistics(self, column): | ||
| col_data = self.data[column].dropna() | ||
| desc = stats.describe(col_data) | ||
| print(f"Deskriptive Statistik für '{column}':", desc) | ||
|
|
||
| def perform_fft(self, column, sampling_rate): |
Copilot
AI
Jul 25, 2025
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The method doesn't validate if the specified column exists in the DataFrame before accessing it. This could raise a KeyError if an invalid column name is provided.
| def descriptive_statistics(self, column): | |
| col_data = self.data[column].dropna() | |
| desc = stats.describe(col_data) | |
| print(f"Deskriptive Statistik für '{column}':", desc) | |
| def perform_fft(self, column, sampling_rate): | |
| def descriptive_statistics(self, column): | |
| if column not in self.data.columns: | |
| raise ValueError(f"Column '{column}' does not exist in the data.") | |
| col_data = self.data[column].dropna() | |
| desc = stats.describe(col_data) | |
| print(f"Deskriptive Statistik für '{column}':", desc) | |
| def perform_fft(self, column, sampling_rate): | |
| if column not in self.data.columns: | |
| raise ValueError(f"Column '{column}' does not exist in the data.") |
| plt.grid() | ||
| plt.show() | ||
|
|
||
| def interpolate_missing_data(self, column, method='cubic'): |
Copilot
AI
Jul 25, 2025
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The method doesn't validate if the specified column exists in the DataFrame before accessing it. This could raise a KeyError if an invalid column name is provided.
| def interpolate_missing_data(self, column, method='cubic'): | |
| def interpolate_missing_data(self, column, method='cubic'): | |
| if column not in self.data.columns: | |
| raise ValueError(f"Column '{column}' does not exist in the DataFrame.") |
| def interpolate_missing_data(self, column, method='cubic'): | ||
| y = self.data[column] | ||
| x = np.arange(len(y)) | ||
| mask = np.isfinite(y) | ||
| interpolator = interpolate.interp1d(x[mask], y[mask], kind=method, fill_value="extrapolate") | ||
| y_interp = interpolator(x) | ||
| self.data[column+'_interp'] = y_interp |
Copilot
AI
Jul 25, 2025
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[nitpick] String concatenation for column naming could lead to unclear column names. Consider using a more explicit format like f'{column}_interpolated' or allow custom naming through a parameter.
| def interpolate_missing_data(self, column, method='cubic'): | |
| y = self.data[column] | |
| x = np.arange(len(y)) | |
| mask = np.isfinite(y) | |
| interpolator = interpolate.interp1d(x[mask], y[mask], kind=method, fill_value="extrapolate") | |
| y_interp = interpolator(x) | |
| self.data[column+'_interp'] = y_interp | |
| def interpolate_missing_data(self, column, method='cubic', new_column_name=None): | |
| y = self.data[column] | |
| x = np.arange(len(y)) | |
| mask = np.isfinite(y) | |
| interpolator = interpolate.interp1d(x[mask], y[mask], kind=method, fill_value="extrapolate") | |
| y_interp = interpolator(x) | |
| new_column_name = new_column_name or f'{column}_interpolated' | |
| self.data[new_column_name] = y_interp |
| print("Optimierungsergebnis:", res.x) | ||
|
|
||
| def main(): | ||
| analyzer = DataAnalyzerSuite('sample_data.csv') |
Copilot
AI
Jul 25, 2025
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The hardcoded filename 'sample_data.csv' makes the main function inflexible. Consider accepting command line arguments or making the filename configurable.
| analyzer = DataAnalyzerSuite('sample_data.csv') | |
| # Check for a command-line argument specifying the filename | |
| csv_file = sys.argv[1] if len(sys.argv) > 1 else 'sample_data.csv' | |
| analyzer = DataAnalyzerSuite(csv_file) |
| analyzer = DataAnalyzerSuite('sample_data.csv') | ||
| analyzer.descriptive_statistics('value') | ||
| analyzer.perform_fft('value', sampling_rate=800) | ||
| analyzer.interpolate_missing_data('value', method='cubic') |
Copilot
AI
Jul 25, 2025
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The hardcoded column name 'value' assumes a specific data structure. This makes the example less flexible and could fail if the CSV doesn't contain this column.
| analyzer = DataAnalyzerSuite('sample_data.csv') | |
| analyzer.descriptive_statistics('value') | |
| analyzer.perform_fft('value', sampling_rate=800) | |
| analyzer.interpolate_missing_data('value', method='cubic') | |
| csv_file = 'sample_data.csv' | |
| column_name = input("Bitte geben Sie den Spaltennamen ein: ") | |
| analyzer = DataAnalyzerSuite(csv_file, column_name) | |
| analyzer.descriptive_statistics(column_name) | |
| analyzer.perform_fft(column_name, sampling_rate=800) | |
| analyzer.interpolate_missing_data(column_name, method='cubic') |
No description provided.