Skip to content

ansj分词.ict的真正java实现.分词效果速度都超过开源版的ict. 中文分词,人名识别,词性标注,用户自定义词典

License

Notifications You must be signed in to change notification settings

bytegolang/ansj_seg

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ansj中文分词

#####使用帮助http://nlpchina.github.io/ansj_seg/

#####在线测试地址http://demo.ansj.org

摘要

这是一个基于google语义模型+条件随机场模型的中文分词的java实现.

分词速度达到每秒钟大约200万字左右(mac air下测试),准确率能达到96%以上

目前实现了.中文分词. 中文姓名识别 . 用户自定义词典

可以应用到自然语言处理等方面,适用于对分词效果要求高的各种项目.

下载jar
  • 访问 http://maven.nlpcn.org/org/ansj/ 最好下载最新版 ansj_seg/
    • 如果你用的是1.x版本需要下载tree_split.jar
    • 如果你用的是2.x版本需要下载nlp-lang.jar
    • 如果你用的是3.x以上版本只需要下载 ansj_seg-[version]-all-in-one.jar 一个jar包就能浪了。
  • 导入到eclipse ,开始你的程序吧
maven
  1. 使用git下载本项目:
git clone https://github.com/NLPchina/ansj_seg
  1. 进入ansj_seg目录,使用maven安装项目:
mvn clean install -Dmaven.test.skip=true
  1. 在dependencies标签中粘贴如下:(其实version 以最新的为标准.)
	<!-- 增加新的maven源 -->	
	<repositories>
		<repository>
			<id>mvn-repo</id>
			<url>http://maven.nlpcn.org/</url>
		</repository>
	</repositories>


    <dependencies>
        ....
        
        <dependency>
            <groupId>org.ansj</groupId>
            <artifactId>ansj_seg</artifactId>
            <version>3.3</version>
        </dependency>
        ....
    </dependencies>
调用demo

如果你第一次下载只想测试测试效果可以调用这个简易接口


 String str = "欢迎使用ansj_seg,(ansj中文分词)在这里如果你遇到什么问题都可以联系我.我一定尽我所能.帮助大家.ansj_seg更快,更准,更自由!" ;
 System.out.println(ToAnalysis.parse(str));
 
 [欢迎/, 使用/, ansj/, _/, seg/, ,/, (/, ansj/, 中文/, 分词/, )/, 在/, 这里/, 如果/, 你/, 遇到/, 什么/, 问题/, 都/, 可以/, 联系/, 我/, 房/, 我/, 一定/, 尽/, 我/, 所/, 能/, ./, 帮助/, 大家/, ./, ansj/, _/, seg/, 更/, 快/, ,/, 更/, 准/, ,/, 更/, 自由/, !/]

##大事记要

#2016年1月14日

经过了很久很久.如大家所看.最后一次事件纪要是一年半以前.没什么好说的了.之前因为我的不负责任让这个项目停滞了好久.这次做了很多改进.断断续续,大致如下

  • 大幅提升了NlpAnalysis的准确性
  • 将crfmodel 从jar包中移除.提供DownLibrary进行下载
  • 增加了用户自定义词典优先的功能.(原谅我曾经的倔强)通过UserDefineAnalysis进行分词
  • 将jar包版本重新改为jdk6
  • 关键词提取增加keyword关键词.可以只是英文了算是
  • 其他种种.....祝愿所有人身体健康万事如意.也祝愿我自己

#2014年6月13日

额,今天是黑色星期五。正在紧张而有序的在做ansj2.0版本的升级。如果你用的版本是2.0x都是预览版。不保证稳定性。所以非版本控。不要跟着更新,这次修改的内容主要有:

  • 修复对reader流偏移量的错误。主要是因为\n\r造成的不可读错误
  • 修复term类的get方法乱用的错误。主要是为了让term对象更好的被json序列号
  • 对核心词典的重构。
  • 放弃tree-split。jar 迁移到nlp-lang.jar中。nlp-lang是我的一个新项目。内容多多大家又兴趣可以到https://github.com/nlpchina/nlp-lang去看看。
  • 重构crf模块。让每个人可以训练自己的crf。补充文档。

#2014年3月10日

此次更新,对tree-split中潜伏了n久的偏移量错误进行了修正。之所以修改这个是要作关键字标红。所以理所当然我把摘要做了,同时对关键词抽取作了一些补充了规则。目前摘要还处于alaph阶段。说白了,光一个摘要都能写一篇博士论文,对于开放场景的摘要其实未必需要高深的算法,这个可以在工程中用,能用,简单,但是无法做到行业顶级,每一个应用如果要做细作精,必须去结合自己的需求,以及业务来作。所以这些基础件理念是用20%的工作完成80%的功能。突然想起一句广告词。好不好看疗效。俄。。。写到这里发现走题了。总结下。这次新增了 。摘要 ,基于query的摘要 ,文章标红,优化了关键词抽取。等功能。很想做一件事情,做一个开源的nlp处理工具包。包括摘要,关键词抽取,倾向性分析,主题发现等功能,不在这里做了另起一个项目。有兴趣的可以联系我。加油

#2014年2月10日

终于把文档补全,因为时间比较仓促。本人比较懒,也不喜欢写字。所以断断续续的,大致也有了个好的结果。比较让人高兴的是我找到了一个写文档的方式。之写markdown文件。然后用ajax调用marked进行渲染最后通过hightlight插件。对code标记。:-)全部js搞定。也得力于上面两个优秀的开源项目,妈妈再也不担心我的文档了。:-)。对了利用过年这几天,分词做了大量的改动。经过多次的内心挣扎,放弃了一些分词结果较好的办法。将分词程序控制到了50m一下。对于不需要新词发现的用户。比如做搜索建议用ansj_min版本。只有4m左右大小。方便移动节能环保。

#2014年1月21日

增加了crf模型的解析。用crf来做未登录词的识别。取得了不错的效果,增加了对长词的进一步解析。将颗粒度防到最低。但是随之而来的影响造成了。分词jar包过大。大约有500多m,无法很顺利发布到git 和 maven库中。试了oschina的maven库也是不可以。如果没有很好的方案。ansj决定放弃maven支持。对于这方面需求的朋友只能说非常抱歉了。我不想因为担心项目的庞大。而畏首畏尾。当然对于jar包的发布可能选择云盘的方案。对于用于搜索的朋友。不建议跟着更新。因为index分词没有作更多的改变。祝好。剩下今年的时间(阴历),有下面几个打算。重构代码。优化里面的关键性算法。完善文档。随缘

#2013年12月12日

把由字构词的方式加到了分词中,对未登录词有了很大的提高。对外国人名的识别做了特定的优化。目前正在测试中。新增了httpserver 的控制台。可以直接方便调用分词结果

#2013年9月26日

我更新完了发表此帖为止的一次更新。在核心辞典上作了一些手脚。这个版本更像以前的版本。在分词的颗粒度上保持了优良的传统。尤其是面向搜索的用户。一定要更新

#2013-08-28

经过无数网友的抗议。ansj终于支持了maven。在这里感谢帮我把项目转换到maven的那个兄弟。你qq我找不到了。名字我也忘记了。

#改进

断断续续修改了无数个版本。在csdn的搜索系统上。用12年的历史数据.检索分析等.ansj经受住了考验。但是根据网友和自己的发现。找到了项目中的很多不足于是。开工。。。。。 同时在改进的过程中。我认识了更多的朋友。太多了。恩还有在读这篇文章的你。感谢你们对这个小工具的支持。在这里不一一例举了。主要找你们的名字比较麻烦。而我有是个很懒惰的人

#崩溃

如大多数的开源者一样,项目带来了很多负担

比如。在你工作或者思考的时候。别人就会打断你的思路。qq or email 提出了数个问题。或者bug。当然这些中大多都是友善的很有意义的建议。一方面让我更加坚定做好这个开源分词的决心。另一方面也给我的工作生活带来了一些效率上的影响。大多数提问我都是会回答。而且尽可能的保持耐心。但是如果有怠慢的地方。我在这里对大家表示歉意。

#诞生

2012-9-7 日Ansj中文分词。在我整整一夜的奋斗中终于完成了,真的是一夜的奋斗。写着写着一抬头天亮了。当然中间的快乐与心酸这里就不牢骚了。

通过微薄@了52nlp希望他能帮我推广下。在他的帮助下。ansj结识了很多朋友。@完后我就去睡觉了。辗转的一个夜晚。当下午醒来的时候。很多人微薄@我。我开玩笑的和cq说。我火了。

同时也@了我的启蒙导师张华平老师。他对我表示了支持。在这里感谢他

About

ansj分词.ict的真正java实现.分词效果速度都超过开源版的ict. 中文分词,人名识别,词性标注,用户自定义词典

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 99.2%
  • HTML 0.8%