Skip to content

c3rb3ru5d3d53c/binlex

build OS Linux OS Windows OS MacOS GitHub stars Discord Status GitHub license GitHub all releases

Binlex logo

Binlex - A Binary Genetic Trait Lexer Framework

If maldevs think their binary is FUD, they're about to have an existential crisis.

Binlex is a tool for malware analysts and researchers that extracts instructions, basic blocks, and functions from binary files and organizes them into a structured hierarchy of genomes, chromosomes, allele pairs, and genes. 🦠🔍

  • A genome represents an instruction, block, or function in the binary. 🧬
  • Each genome contains one or more chromosomes, which are patterns or sequences of data within the instruction, function, or block.
  • A chromosome is made up of allele pairs, each representing two genes, encoded as a single byte (split into two nibbles).
  • A gene is the smallest unit, represented by a single nibble.

This hierarchical breakdown allows binlex to analyze and compare malware binaries by treating their code structure like a "DNA fingerprint," making it easier to detect patterns, similarities, and variations across samples.

Unlike tools relying on pure Python, which can be slow 🐢, Binlex is designed for speed, simplicity, and flexibility. Its command-line interface helps analysts search for patterns across hundreds or thousands of malware samples, saving time ⏳ and resources 💰.

For malware analysts and reverse engineers, binlex includes a IDA plugin and a vector database (binlex server) designed to identify similar functions.

While tools like BinDiff and Diaphora excel in single-file comparisons, binlex server operates more like Lumina but with a modern approach. Instead of relying on FLIRT signatures, binlex server leverages the power of a Graph Neural Network (GNN) and similarity hashing with architecture specific normalization for enhanced precision and flexibility.

With binlex sever, you gain access to usernames, timestamps, and the sample hashes from which function signatures are derived, critical insights for collaborative analysis.

A set of command-line tools are also provided to malware analysts and reverse engineers to help speed up the hunting of common patterns for threat hunting and detection.

For developers, binlex offers a Rust API and Python bindings to build custom tooling with minimal licensing restrictions. 🔓

As part of the fight against malware, binlex is free to use—just download the binaries from the release page. 📥

🚀 Features

The latest version of binlex provides the following amazing features!

Feature Description
🌐 Platforms - Windows 🪟
- MacOS 🍏
- Linux 🐧
🌐 Formats - PE
- MachO
- ELF
🌐 Architectures - AMD64
- I386
- CIL
🧵 Multi-Threading - 🔒 Thread-Safe Disassembler Queuing
- 🚄 Multi-Threaded Tooling for Maximum Efficiency
⚙️ Customizable Performance Toggle features on/off to optimize for your use case
📉 JSON String Compression Save memory with JSON compression
🧩 Similarity Hashing - 🔍 Minhash
- 🔒 TLSH
- 🔐 SHA256
🧩 Function Symbols - Pass function symbols to binlex as standard input using blpdb, blelfsym or blmachosym or your own tooling
🏷️ Tagging Tagging for easy organization
🎯 Wildcarding Perfect for generating YARA rules and now at a resolution of nibbles!
API - 🦀 Rust API
-Python API
🤖 Machine Learning Features - 📊 Normalized Features
- 🔍 Vector Database
- 📚 Jupyter Notebook
- 🧠 Function Identification
📂 Virtual Imaging - Efficient mapping cache for virtual images
- 🗄️ Compatible with ZFS / BTRFS
- Speeds up repetitive tasks and filtering
- Lightening speed ⚡

By caching virtual images, binlex is able to perform at better speeds, making repeat runs faster and more efficient.

Building

To build binlex you need Rust.

Linux, MacOS and Windows

Installation is straight foward on Linux and MacOS.

cargo build --release

Python Bindings

cd src/bindings/python/
virtualenv -p python3 venv/
source venv/bin/activate
pip install maturin[patchelf]
maturin develop
python
>> import binlex

Packaging

To build packages for various platforms use the Makefile.

make zst   # Make Arch Linux Package
make deb   # Make Debian Package
make wheel # Make Python Wheel

The resulting packages will be in the target/ directory.

IDA Plugin

Installing the IDA plugin is easy to install, just make sure you installed the Python bindings in the Python environment for IDA.

Now copy the directory for the binlex plugin to your plugin directory.

mkdir -p ~/.idapro/plugins/
cp -r scripts/plugins/ida/binlex/ ~/.idapro/plugins/
cd ~/.idaapro/plugins/binlex/
pip install -r requirements.txt

You will also need to ensure the server is running, GPU hardware is recommended for faster GNN inference but not required.

cd scripts/blserver/
make -C configs/
docker-compose up -d

Once completed the following services will be available.

Service Name Description URL
Binlex Server API Documentation https://127.0.0.1/swagger
Attu Milvus Vector Database Attu Milvus Vector Database UI https://127.0.0.1:8443
MinIO MinIO Object Store https://127.0.0.1:7443
JupyterHub JupyterHub Web GUI https://127.0.0.1:6443

The default API key is 39248239c8ed937d6333a41874f1c8e310c5070703af30c06e67b0d308cb82c5, which you can use with your IDA plugin.

Once you open IDA, you should be greeted with the binlex welcome message.

Binlex IDA Plugin

Using the IDA plugin you have various features that are provided to help you with YARA rule writing and similarity analysis.

Main Menu:

  • Export Database (Export to JSON)
  • Index Database
  • Search Database (Search and Apply Function Names)
  • Functions (Functions Table)
  • Export Byte Color Map (Save Byte ColorMap to SVG)
  • JSON Query (jq queries inside IDA)

Disassembler Context Menu:

  • Copy YARA Pattern
  • Copy Hex
  • Copy MinHash from Selection
  • Copy TLSH from Selection
  • Scan for MinHash
  • Scan for TLSH

Once you set your API key and URL, it is saved in the IDA registry and auto-completed for you in the future.

The copy pattern and copy hex feature is intended to help with YARA rules and the copying of similarity hashes and scanning is for hunting for similar data.

To ensure your database can be accessed by others using the same server click Index Database, which pushes the function data to the server.

To find function names, click Search Database, which will populate a table once completed of best matches from the vector databaase you can then apply to your project.

Documentation

cargo doc

You can also open the docs.

cargo doc --open

Binary Genomes, Chromosomes, Allele Pairs and Genes

In binlex, a hierarchy of genetic-inspired terms is used to describe and symbolize the structure and traits of binary code. This terminology reflects the relationships between different abstractions and their genetic analogies:

  • Genome: Represents the each object being analyzed, such as a function or block. It encapsulates all the information, including metadata, chromosomes, and other attributes.

  • Chromosome: Represents the core patterns or sequences extracted from a block or function. A chromosome acts as the blueprint for identifying key characteristics of the binary without memory addressing as indicated by wildcards like ?, where a single wildcard represents a single gene.

  • AllelePair: A unit within the chromosome consisting of two genes. Allele pairs are the building blocks of the chromosome, combining genes into meaningful pairs.

  • Gene: The smallest unit of genetic information, representing a single nibble of data (half a byte).

The relationship between these abstractions can be visualized as follows:

Genome (function / block)
 └── Chromosome (pattern / sequence)
      └── AllelePair (two genes / single byte / two nibbles)
           └── Gene (single nibble)

Genome Example

{
  "type": "block",
  "architecture": "amd64",
  "address": 6442934577,
  "next": null,
  "to": [],
  "edges": 0,
  "prologue": false,
  "conditional": false,
  "chromosome": {
    "pattern": "4c8b47??498bc0",
    "feature": [4,12,8,11,4,7,4,9,8,11,12,0],
    "entropy": 2.2516291673878226,
    "sha256": "1f227bf409b0d9fbc576e747de70139a48e42edec60a18fe1e6efdacb598f551",
    "minhash": "09b8b1ad1142924519f601854444c6c904a3063942cda4da445721dd0703f290208f3e32451bf5d52741e381a13f12f9142b5de21828a00b2cf90cf77948aac4138443c60bf77ec31199247042694ebb2e4e14a41369eddc7d9f84351be34bcf61458425383a03a55f80cbad420bb6e638550c15876fd0c6208da7b50816847e62d72b2c13a896f4849aa6a36188be1d4a5333865eab570e3939fab1359cbd16758f36fa290164d0259f83c07333df535b2e38f148298db255ac05612cae04d60bb0dd810a91b80a7df9615381e9dc242969dd052691d044287ac2992f9092fa0a75d970100d48362f62b58f7f1d9ec594babdf52f58180c30f4cfca142e76bf",
    "tlsh": null
  },
  "size": 7,
  "bytes": "4c8b4708498bc0",
  "functions": {},
  "number_of_instructions": 3,
  "entropy": 2.5216406363433186,
  "sha256": "84d4485bfd833565fdf41be46c1a499c859f0a5f04c8c99ea9c34404729fd999",
  "minhash": "20c995de6a15c8a524fa7e325a6e42b217b636ab03b00812732f877f4739eeee41d7dde92ceac73525e541f9091d8dc928f6425b84a6f44b3f01d17912ec6e8c6f913a760229f685088d2528447e40c768c06d680afe63cb219a1b77a097f679122804dd5a1b9d990aa2579e75f8ef201eeb20d5650da5660efa3a281983a37f28004f9f2a57af8f81728c7d1b02949609c7ad5a30125ff836d8cc3106f2531f306e679a11cabf992556802a3cb2a75a7fe3773e37e3d5ab107a23bf22754aee15a5f41056859b06120f86cb5d39071425855ec90628687741aa0402030d73e04bc60adb0bd2430560442c4309ae258517fc1605438c95485ac4c8621026a1bb",
  "tlsh": null,
  "contiguous": true,
  "attributes": [
    {
      "type": "tag",
      "value": "corpus:malware"
    },
    {
      "type": "tag",
      "value": "malware:lummastealer"
    },
    {
      "entropy": 6.55061550644311,
      "sha256": "ec1426109420445df8e9799ac21a4c13364dc12229fb16197e428803bece1140",
      "size": 725696,
      "tlsh": "T17AF48C12AF990595E9BBC23DD1974637FAB2B445232047CF426489BD0E1BBE4B73E381",
      "type": "file"
    }
  ]
}

Given this JSON genome example.

  • Genome: The JSON object describing the block, including its metadata, chromosome, and attributes.
  • Chromosome: as described by the pattern "4c8b47??498bc0"
  • AllelePair: "4c" or "8b"
  • Gene: "4" or "c"

Using the binlex API it is possible to mutate these chromosomes, their allele pairs and genes to facilitate genetic programming.

Genetic programming in this context can have several benifits including but not limited to:

  • Hunting for novel samples given a dataset
  • YARA rule generation

Command-Line

The simplest way to get started is with the command-line, leveraging a JSON filtering tool like jq.

The following command disassembles sample.dll with 16 threads, the relevant traits are JSON objects, one per line and are piped into jq for filtering and beautifying.

To see what options are available when using the binlex command-line use -h or --help.

A Binary Pattern Lexer

Version: 2.0.0

Usage: binlex [OPTIONS] --input <INPUT>

Options:
  -i, --input <INPUT>
  -o, --output <OUTPUT>
  -a, --architecture <ARCHITECTURE>      [amd64, i386, cil]
  -c, --config <CONFIG>
  -t, --threads <THREADS>
      --tags <TAGS>
      --minimal
  -d, --debug
      --enable-instructions
      --enable-block-instructions
      --disable-hashing
      --disable-disassembler-sweep
      --disable-heuristics
      --enable-mmap-cache
      --mmap-directory <MMAP_DIRECTORY>
  -h, --help                             Print help
  -V, --version                          Print version

Author: @c3rb3ru5d3d53c

A simple example of using the command-line is provided below.

binlex -i sample.dll --threads 16 | jq

Please note that binlex will detect the file format fort you and currently supports PE, ELF and MACHO binary formats.

Configuration

Upon your first execution of binlex it will store the configuration file in your configuration directory in binlex/binlex.toml.

This binlex finds the default configuration directory based on your operating system as indicated in the table below for its configuration.

OS Environment Variable Example Binlex Configuration Path
Linux $XDG_CONFIG_HOME or $HOME/.config /home/alice/.config/binlex/binlex.toml
macOS $HOME/Library/Application Support /Users/Alice/Library/Application Support/binlex/binlex.toml
Windows {FOLDERID_RoamingAppData} C:\Users\Alice\AppData\Roaming\binlex\binlex.toml

The default configuration name binlex.toml for binlex is provided below.

[general]
threads = 16
minimal = false
debug = false

[formats.file.hashing.sha256]
enabled = true

[formats.file.hashing.tlsh]
enabled = true
minimum_byte_size = 50
threshold = 200

[formats.file.hashing.minhash]
enabled = true
number_of_hashes = 64
shingle_size = 4
maximum_byte_size_enabled = false
maximum_byte_size = 50
seed = 0
threshold = 0.75

[formats.file.heuristics.features]
enabled = true

[formats.file.heuristics.entropy]
enabled = true

[instructions]
enabled = false

[instructions.hashing.sha256]
enabled = true

[instructions.hashing.tlsh]
enabled = true
minimum_byte_size = 50
threshold = 200

[instructions.hashing.minhash]
enabled = true
number_of_hashes = 64
shingle_size = 4
maximum_byte_size_enabled = false
maximum_byte_size = 50
seed = 0
threshold = 0.75

[instructions.heuristics.features]
enabled = true

[instructions.heuristics.entropy]
enabled = true

[blocks]
enabled = true

[blocks.instructions]
enabled = false

[blocks.hashing.sha256]
enabled = true

[blocks.hashing.tlsh]
enabled = true
minimum_byte_size = 50
threshold = 200

[blocks.hashing.minhash]
enabled = true
number_of_hashes = 64
shingle_size = 4
maximum_byte_size_enabled = false
maximum_byte_size = 50
seed = 0
threshold = 0.75

[blocks.heuristics.features]
enabled = true

[blocks.heuristics.entropy]
enabled = true

[functions]
enabled = true

[functions.blocks]
enabled = true

[functions.hashing.sha256]
enabled = true

[functions.hashing.tlsh]
enabled = true
minimum_byte_size = 50
threshold = 200

[functions.hashing.minhash]
enabled = true
number_of_hashes = 64
shingle_size = 4
maximum_byte_size_enabled = false
maximum_byte_size = 50
seed = 0
threshold = 0.75

[functions.heuristics.features]
enabled = true

[functions.heuristics.entropy]
enabled = true

[chromosomes.hashing.sha256]
enabled = true

[chromosomes.hashing.tlsh]
enabled = true
minimum_byte_size = 50
threshold = 200

[chromosomes.hashing.minhash]
enabled = true
number_of_hashes = 64
shingle_size = 4
maximum_byte_size_enabled = false
maximum_byte_size = 50
seed = 0
threshold = 0.75

[chromosomes.heuristics.features]
enabled = true

[chromosomes.heuristics.entropy]
enabled = true

[chromosomes.homologues]
enabled = true
maximum = 4

[mmap]
directory = "/tmp/binlex"

[mmap.cache]
enabled = false

[disassembler.sweep]
enabled = true

If the command-line options are not enough the configuration file provides the most granular control of all options.

If you wish to override the default configuration file and specify another configuration file use the command-line parameter.

binlex -c config.toml -i sample.dll

When you run binlex, it uses the configuration file and overrides any settings when the respective command-line parameter is used.

Making a YARA Rule

Here is a general workflow getting started with making YARA rules, where we get 10 unique wildcarded YARA hex strings from a given sample.

binlex -i sample.dll --threads 16 | jq -r 'select(.size >= 16 and .size <= 32 and .chromosome.pattern != null) | .chromosome.pattern' | sort | uniq | head -10
016b??8b4b??8bc74c6bd858433b4c0b2c0f83c5??????
01835404????c6836a0400????837e04??
03c04c8d05????????4863c8420fb60401460fb64401018942??85c074??
03c38bf0488d140033c9ff15????????488bd84885c075??
03c6488d55??41ffc58945a?41b804000000418bcce8b8fd01??eb??
03c6488d55??41ffc58945a?41b804000000418bcce8e3fb01??eb??
03f7488d05????????4883c310483bd87c??
03fb4c8bc6498bd7498bcc448d0c7d04000000e89409????8bd84885f6
03fe448bc6488bd3418bcee8d8e501??85ed
03fe897c24??397c24??0f867301????

To take this a step further you can run it through the blyara tool to make a quick YARA signature.

binlex -i sample.dll --threads 16 | jq -r 'select(.size >= 16 and .size <= 32 and .chromosome.pattern != null) | .chromosome.pattern' | sort | uniq | head -10 | blyara -n example
rule example {
    strings:
        $trait_0 = {016b??8b4b??8bc74c6bd858433b4c0b2c0f83c5??????}
        $trait_1 = {01835404????c6836a0400????837e04??}
        $trait_2 = {03c04c8d05????????4863c8420fb60401460fb64401018942??85c074??}
        $trait_3 = {03c38bf0488d140033c9ff15????????488bd84885c075??}
        $trait_4 = {03c6488d55??41ffc58945a?41b804000000418bcce8b8fd01??eb??}
        $trait_5 = {03c6488d55??41ffc58945a?41b804000000418bcce8e3fb01??eb??}
        $trait_6 = {03f7488d05????????4883c310483bd87c??}
        $trait_7 = {03fb4c8bc6498bd7498bcc448d0c7d04000000e89409????8bd84885f6}
        $trait_8 = {03fe448bc6488bd3418bcee8d8e501??85ed}
        $trait_9 = {03fe897c24??397c24??0f867301????}
    condition:
        1 of them

For even better results if you exported the genomes using the binlex IDA plugin or by other means you can filter for function starting prefixes like mw::, for malware, which is pretty common.

cat dump.json | jq -r 'select(.type == "function" and .size > 32 and (.attributes[] | .type == "symbol" and (.name | startswith("mw::")))) | .blocks[] | select(.size > 32) | .chromosome.pattern' | blyara -n example

Using Ghidra with Binlex

To use binlex with ghidra use the blghidra/blghidra.py script in the scripts directory.

To leverage function names and virtual addresses from your Ghidra projects and provide them to binlex use the analyzeHeadless script in your Ghidra install directory.

./analyzeHeadless \
  <project-directory> \
  <project-name> \
  -process sample.dll \
  -noanalysis \
  -postscript blghidra.py 2>/dev/null |  grep -P "^{\"type" | binlex -i sample.dll

Please note that analyzeHeadless prints log messages to stdout and other log output to stderr that is of no use interoperability with other command-line utilities.

As such, to collect the output of the script it must be filtered with 2>/dev/null | grep -P "^{\"type".

Using Rizin with Binlex

To leverage the power of Rizin function detection and function naming in binlex, run rizin on your project using aflj to list the functions in JSON format.

Then pipe this output to blrizin, which parses rizin JSON to a format binlex undestands.

Additionally, you can combine this with other tools like blpdb to parse PDB symbols to get function addresses and names.

You can then do any parsing as you generally would using jq, in this example we count the functions processed by binlex to see if we are detecting more of them.

rizin -c 'aaa;aflj;' -q sample.dll | \
  blrizin | \
  blpdb -i sample.pdb | \
  binlex -i sample.dll | \
  jq 'select(.type == "function") | .address' | wc -l

NOTE: At this time blrizin is also compatiable with the output from radare2 using blrizin.

Collecting Machine Learning Features

If you are would like to do some machine learning, you can get features representing the nibbles without memory addressing from binlex like this.

binlex -i sample.dll --threads 16 | jq -r -c 'select(.size >= 16 and .size <= 32 and .signature.feature != null)| .signature.feature' | head -10
[4,9,8,11,12,0,4,1,11,9,0,3,0,0,1,15,0,0,4,5,3,3,12,0,8,5,13,2,4,8,8,11,13,0,4,1,0,15,9,5,12,0,4,8,15,15,2,5]
[4,4,8,11,5,1,4,5,3,3,12,0,3,3,12,0,4,8,8,3,12,1,3,0,4,1,0,15,10,3,12,2]
[4,8,8,3,14,12,4,12,8,11,12,10,4,4,8,9,4,4,2,4,11,2,0,1,4,4,0,15,11,7,12,1,8,10,12,10,14,8,5,11,4,8,8,3,12,4,12,3]
[4,8,8,3,14,12,4,4,8,9,4,4,2,4,4,12,8,11,12,10,4,4,0,15,11,7,12,1,11,2,0,1,3,3,12,9,14,8,0,11,4,8,8,3,12,4,12,3]
[4,0,5,3,4,8,8,3,14,12,15,15,1,5,8,11,12,8,8,11,13,8,15,15,1,5,8,11,12,3,4,8,8,3,12,4,5,11,12,3]
[11,9,2,0,0,3,15,14,7,15,4,8,8,11,8,11,0,4,2,5,4,8,0,15,10,15,12,1,4,8,12,1,14,8,1,8,12,3]
[8,11,0,12,2,5,11,8,2,0,0,3,15,14,7,15,4,8,12,1,14,1,2,0,4,8,8,11,4,8,12,1,14,0,0,8,4,8,15,7,14,1,4,8,8,11,12,2,12,3]
[4,8,8,11,0,5,4,8,8,5,12,0,7,5,12,3,4,8,15,15,2,5]
[4,8,8,11,0,13,3,3,12,0,3,8,8,1,11,0,0,8,0,15,9,5,12,0,12,3]
[4,8,8,11,0,5,4,8,8,5,12,0,7,5,12,3,4,8,15,15,2,5]

If you would like to refine this for your machine learning model by normalizing them between 0 and 1 float values binlex has you covered with the blscaler tool.

binlex -i sample.dll --threads 16 | jq -r -c 'select(.size >= 16 and .size <= 32 and .signature.feature != null)' | blscaler --threads 16 | jq -c -r '.signature.feature' | head -1
[0.26666666666666666,0.6,0.5333333333333333,0.7333333333333333,0.8,0.0,0.26666666666666666,0.06666666666666667,0.7333333333333333,0.6,0.0,0.2,0.0,0.0,0.06666666666666667,1.0,0.0,0.0,0.26666666666666666,0.3333333333333333,0.2,0.2,0.8,0.0,0.5333333333333333,0.3333333333333333,0.8666666666666667,0.13333333333333333,0.26666666666666666,0.5333333333333333,0.5333333333333333,0.7333333333333333,0.8666666666666667,0.0,0.26666666666666666,0.06666666666666667,0.0,1.0,0.6,0.3333333333333333,0.8,0.0,0.26666666666666666,0.5333333333333333,1.0,1.0,0.13333333333333333,0.3333333333333333]

Virtual Image File Mapping Cache with Compression

To leverage the powerful feature of filemapping to reduce memory usage but still benifit from virtual images.

# Install BTRFS
sudo pacman -S btrfs-progs compsize
# Enable the Kernel Module on Boot
echo "btrfs" | sudo tee /etc/modules-load.d/btrfs.conf
# Reboot
reboot
# Create Virtual Image Cache Storage Pool
dd if=/dev/zero of=btrfs.img bs=1M count=2048
# Make it BTRFS
mkfs.btrfs btrfs.img
# Make a Cache Directory in /tmp/
mkdir -p /tmp/binlex/
# Mount the Cache (Multiple Compression Options Available)
sudo mount -o compress=lzo btrfs.img /tmp/binlex/
# Run Binlex
binlex -i sample.dll --threads 16 --enable-file-mapping --file-mapping-directory /tmp/binlex/ --enable-file-mapping-cache
sudo compsize ec1426109420445df8e9799ac21a4c13364dc12229fb16197e428803bece1140
# Virtual Image 6GB vs Stored Size of 192MB
# Processed 1 file, 49156 regular extents (49156 refs), 0 inline.
# Type       Perc     Disk Usage   Uncompressed Referenced
# TOTAL        3%      192M         6.0G         6.0G
# none       100%      384K         384K         384K
# lzo          3%      192M         6.0G         6.0G

This can set this up to be on disk or if /tmp/ directory is mapped to RAM.

When mapped to RAM, we are taking advantage of virtual image disassembling but without the additional RAM penalty where repetitive tasks almost double in processing speed.

Since btrfs abstracts the access to the mapped file in kernel we are able to access it as we would any mapped file but with the benefit of compression.

To save yourself time if you choose this option, make the mounting of the btrfs pool happen on boot and have your binlex configuration file set to prefer virtual image caching in the mounted pool directory. This approach ensures that you need not rely on the command-line parameters each time.

Binlex API

The philophsy of the binlex project is focused on security, simplicity, speed and extendability.

Part of this is providing an API for developers to write their own detection and hunting logic.

At this time, binlex provides both Rust and Python bindings.

Rust API

The Rust, API makes is easy to get started

Native PE

use std::process;
use binlex::Config;
use binlex::formats::PE;
use binlex::disassemblers::capstone::Disassembler;
use binlex::controlflow::Graph;

// Get Default Configuration
let mut config = Config();

// Use 16 Threads for Multi-Threaded Operations
config.general.threads = 16;

// Read PE File
let pe = PE.new("./sample.dll", config)
  .unwrap_or_else(|error| {
    eprintln!("{}", error);
    process::exit(1);
  });

// To check if DotNet PE use pe.is_dotnet()

// Get Memory Mapped File
let mapped_file = pe.image()
  .unwrap_or_else(|error| {
    eprintln!("{}", error);
    process::exit(1)
  });

// Get Mapped File Virtual Image
let image = mapped_file
  .mmap()
  .unwrap_or_else(|error| {
    eprintln!("{}", error);
    process::exit(1);
  });

// Create Disassembler
let disassembler = Disassembler(pe.architecture(), &image, pe.executable_virtual_address_ranges(), config)
  .unwrap_or_else(|error| {
    eprintln!("{}", error);
    process::exit(1);
  });

// Create Control Flow Graph
let cfg = Graph(pe.architecture(), config);

// Disassemble Control Flow
disassembler.disassemble_controlflow(pe.entrypoint_virtual_addresses(), &mut cfg);

.NET (MSIL/CIL) PE

use std::process;
use binlex::Config;
use binlex::formats::PE;
use binlex::disassemblers::custom::cil::Disassembler;
use binlex::controlflow::Graph;

// Get Default Configuration
let mut config = Config();

// Use 16 Threads for Multi-Threaded Operations
config.general.threads = 16;

// Read PE File
let pe = PE.new("./sample.exe", config)
  .unwrap_or_else(|error| {
    eprintln!("{}", error);
    process::exit(1);
  });

// To check if DotNet PE use pe.is_dotnet()

// Get Memory Mapped File
let mapped_file = pe.image()
  .unwrap_or_else(|error| {
    eprintln!("{}", error);
    process::exit(1)
  });

// Get Mapped File Virtual Image
let image = mapped_file
  .mmap()
  .unwrap_or_else(|error| {
    eprintln!("{}", error);
    process::exit(1);
  });

// Create Disassembler
let disassembler = Disassembler(pe.architecture(), &image, pe.dotnet_metadata_token_virtual_addresses(), pe.dotnet_executable_virtual_address_ranges(), config)
  .unwrap_or_else(|error| {
    eprintln!("{}", error);
    process::exit(1);
  });

// Create Control Flow Graph
let cfg = Graph(pe.architecture(), config);

// Disassemble Control Flow
disassembler.disassemble_controlflow(pe.dotnet_entrypoint_virtual_addresses(), &mut cfg);

ELF

use std::process;
use binlex::Config;
use binlex::formats::ELF;
use binlex::disassemblers::custom::cil::Disassembler;
use binlex::controlflow::Graph;

// Get Default Configuration
let mut config = Config();

// Use 16 Threads for Multi-Threaded Operations
config.general.threads = 16;

// Read PE File
let elf = ELF.new("./sample.exe", config)
  .unwrap_or_else(|error| {
    eprintln!("{}", error);
    process::exit(1);
  });

// Get Memory Mapped File
let mapped_file = elf.image()
  .unwrap_or_else(|error| {
    eprintln!("{}", error);
    process::exit(1)
  });

// Get Mapped File Virtual Image
let image = mapped_file
  .mmap()
  .unwrap_or_else(|error| {
    eprintln!("{}", error);
    process::exit(1);
  });

// Create Disassembler
let disassembler = Disassembler(elf.architecture(), &image, elf.executable_virtual_address_ranges(), config)
  .unwrap_or_else(|error| {
    eprintln!("{}", error);
    process::exit(1);
  });

// Create Control Flow Graph
let cfg = Graph(elf.architecture(), config);

// Disassemble Control Flow
disassembler.disassemble_controlflow(elf.entrypoint_virtual_addresses(), &mut cfg);

MACHO

use std::process;
use binlex::Config;
use binlex::formats::MACHO;
use binlex::disassemblers::custom::cil::Disassembler;
use binlex::controlflow::Graph;

// Get Default Configuration
let mut config = Config();

// Use 16 Threads for Multi-Threaded Operations
config.general.threads = 16;

// Read PE File
let macho = MACHO.new("./sample.app", config)
  .unwrap_or_else(|error| {
    eprintln!("{}", error);
    process::exit(1);
  });

// Iterate the MACHO Fat Binary Slices
for index in macho.number_of_slices() {
  // Get Memory Mapped File
  let mapped_file = macho.image(index)
    .unwrap_or_else(|error| {
      eprintln!("{}", error);
      process::exit(1)
    });

  // Get Mapped File Virtual Image
  let image = mapped_file
    .mmap()
    .unwrap_or_else(|error| {
      eprintln!("{}", error);
      process::exit(1);
    });

  // Create Disassembler
  let disassembler = Disassembler(macho.architecture(index), &image, macho.executable_virtual_address_ranges(index), config)
    .unwrap_or_else(|error| {
      eprintln!("{}", error);
      process::exit(1);
    });

  // Create Control Flow Graph
  let cfg = Graph(macho.architecture(index), config);

  // Disassemble Control Flow
  disassembler.disassemble_controlflow(macho.entrypoints(index), &mut cfg);
}

Accessing Genetic Traits

use binlex::controlflow::Instruction;
use binlex::controlflow::Block;
use binlex::controlflow::Function;

for address in cfg.instructions.valid_addresses() {
  // Read Instruction from Control Flow
  instruction = Instruction(address, &cfg);

  // Print Instruction from Control Flow
  instruction.print();
}

for address in cfg.blocks.valid_addresses() {
  // Read Block from Control Flow
  block = Block(address, &cfg);

  // Print Block from Control Flow
  block.print();
}

for address in cfg.functions.valid_addresses() {
  // Read Function from Control Flow
  function = Function(address, &cfg);

  // Print Function from Control Flow
  function.print();
}

Python API

The binlex Python API is now designed to abstract the disassembler and the controlflow graph.

To disassemble a PE memory mapped image use the following examples.

There are more examples in the examples/python/ directory.

IDA Pro Headless Python

It is now possible to leverage IDA's disassembler in headless mode as well.

import json
from binlex import Config
from binlex.controlflow import Graph, Function
from binlex.disassemblers.ida import IDA, Disassembler

config = Config()

ida = IDA()

ida.open_database('sample.i64', run_auto_analysis=False)

image = ida.image()

cfg = Graph(ida.architecture(), config)

disassembler = Disassembler(
    ida.architecture(),
    image.mmap(), {0: image.size()},
    config
)

disassembler.disassemble_controlflow(cfg)

for address in cfg.queue_functions.valid_addresses():
    function = Function(address, cfg)
    function = function.to_dict()
    function['attributes'] = ida.attributes(address)
    print(json.dumps(function))

ida.close_database()

Native PE

from binlex.formats import PE
from binlex.disassemblers.capstone import Disassembler
from binlex.controlflow import Graph
from binlex import Config

# Get Default Configuration
config = Config()

# Use 16 Threads for Multi-Threaded Operations
config.general.threads = 16

# Open the PE File
pe = PE('./sample.exe', config)

# To check if a DotNet PE use ps.is_dotnet()

# Get the Memory Mapped File
mapped_file = pe.image()

# Get the Memory Map
image = mapped_file.mmap()

# Create Disassembler on Mapped PE Image and PE Architecture
disassembler = Disassembler(pe.architecture(), image, pe.executable_virtual_address_ranges(), config)

# Create the Controlflow Graph
cfg = Graph(pe.architecture(), config)

# Disassemble the PE Image Entrypoints Recursively
disassembler.disassemble_controlflow(pe.entrypoint_virtual_addresses(), cfg)

.NET (MSIL/CIL) PE

from binlex.formats import PE
from binlex.disassemblers.custom.cil import Disassembler
from binlex.controlflow import Graph
from binlex import Config


# Get Default Configuration
config = Config()

# Use 16 Threads for Multi-Threaded Operations
config.general.threads = 16

# Open the PE File
pe = PE('./sample.exe', config)

# To check if a DotNet PE use ps.is_dotnet()

# Get the Memory Mapped File
mapped_file = pe.image()

# Get the Memory Map
image = mapped_file.mmap()

# Create Disassembler on Mapped PE Image and PE Architecture
disassembler = Disassembler(pe.architecture(), image, pe.dotnet_metadata_token_virtual_addresses(), pe.dotnet_executable_virtual_address_ranges(), config)

# Create the Controlflow Graph
cfg = Graph(pe.architecture(), config)

# Disassemble the PE Image Entrypoints Recursively
disassembler.disassemble_controlflow(pe.dotnet_entrypoint_virtual_addresses(), cfg)

ELF

from binlex.formats import ELF
from binlex.disassemblers.capstone import Disassembler
from binlex.controlflow import Graph
from binlex import Config

# Get Default Configuration
config = Config()

# Use 16 Threads for Multi-Threaded Operations
config.general.threads = 16

# Open the ELF File
elf = ELF('./sample.so', config)

# Get the Memory Mapped File
mapped_file = pe.image()

# Get the Memory Map
image = mapped_file.mmap()

# Create Disassembler on Mapped ELF Image and ELF Architecture
disassembler = Disassembler(elf.architecture(), image, elf.executable_virtual_address_ranges(), config)

# Create the Controlflow Graph
cfg = Graph(elf.architecture(), config)

# Disassemble the PE Image Entrypoints Recursively
disassembler.disassemble_controlflow(elf.entrypoint_virtual_addresses(), cfg)

MACHO

from binlex.formats import MACHO
from binlex.disassemblers.capstone import Disassembler
from binlex.controlflow import Graph
from binlex import Config

# Get Default Configuration
config = Config()

# Use 16 Threads for Multi-Threaded Operations
config.general.threads = 16

# Open the ELF File
macho = MACHO('./sample.app', config)

# MachO Fat Binary Can Support Multiple Architectures
for index in macho.number_of_slices():

  # Get the Memory Mapped File
  mapped_file = macho.image(index)

  # Get the Memory Map
  image = mapped_file.mmap()

  # Create Disassembler on Mapped MACHO Image and MACHO Architecture
  disassembler = Disassembler(macho.architecture(index), image, macho.executable_virtual_address_ranges(index), config)

  # Create the Controlflow Graph
  cfg = Graph(macho.architecture(index), config)

  # Disassemble the MACHO Image Entrypoints Recursively
  disassembler.disassemble_controlflow(macho.entrypoints(index), cfg)

Parsing the Controlflow Graph

Sometimes it maybe nessassary to parse the controlflow graph generated.

In this case, you can use the following technique.

from binlex.controlflow import Instruction
from binlex.controlflow import Block
from binlex.controlflow import Function

# Iterate Valid Instructions
for address in cfg.queue_instructions.valid_addresses():
  # Read Instruction from Control Flow
  instruction = Instruction(address, cfg)
  # Print Instruction from Control Flow
  instruction.print()

# Iterate Valid Blocks
for address in cfg.queue_blocks.valid_addresses():
  # Read Block from Control Flow
  block = Block(address, cfg)
  # Print Block from Control Flow
  block.print()

# Iterate Valid Functions
for address in cfg.queue_functions.valid_addresses():
  # Read Function from Control Flow
  function = Function(address, cfg)
  # Print Function from Control Flow
  function.print()

Iterating Controlflow Instructions, Blocks, and Functions

Instead of parsing you can access the instructions, blocks, and functions more directly.

for instruction in cfg.instructions():
  instruction.print()

for block in cfg.blocks():
  block.print()

for function in cfg.functions():
  function.print()

Iterating from Functions to Instructions

It is also possible to iterate from functions to blocks, to instructions, to allele pairs, to genes.

This represents going from the highest level abstraction to the lowest abstraction.

for function in cfg.functions():
    for block in function.blocks():
        for instruction in block.instructions():
            for allelepair in instruction.chromosome().allelepairs():
                for gene in allelepair.genes():
                    print(gene)

Comparing Function Similarity

One of the most powerful tools you can use in binlex is to compare functions, blocks, and instructions using similarity hashing.

To perform these comparisons is as simple as calling the compare method.

for lhs in lhs_cfg.functions():
  for rhs in rhs_cfg.functions():
    similarity = lhs.compare(rhs)
    similarity.print()

for lhs in lhs_cfg.blocks():
  for rhs in rhs_cfg.blocks():
    similarity = lhs.compare(rhs)
    similarity.print()

for lhs in lhs_cfg.instructions():
  for rhs in rhs_cfg.instructions():
    similarity = lhs.compare(rhs)
    similarity.print()

Any supported similarity hashing algorithms will be calcualted if they are enabled with your configuration.

Although it can be challenging, binlex supports performing similarity analysis on non-contiguous functions using its own algorithm to find the best similarity matches.

At least 75% or more of a non-contiguous function's data must be hashable to yield a similarity hash.

Accessing Genetic Properties

Each instruction, block and function or genome has an associated chromosome which can be accessed via the API.

You can follow these abstractions down to allele pairs, and their respective genes.

# Iterate Block Chromosome
chromosome = block.chromosome()
for allelepair in chromosome.allelepairs():
  for gene in allelepair.genes()
    gene.print()

# Iterate Block Chromosome
chromosome = function.chromosome()
for allelepair in chromosome.allelepairs():
  for gene in allelepair.genes()
    gene.print()

# Iterate Block Chromosome
chromosome = function.chromosome()
for allelepair in chromosome.allelepairs():
  for gene in allelepair.genes()
    gene.print()

Performing Genetic Mutations

If you are looking to perform genetic programming tasks you can also mutate chromosomes, allelepairs, and genes and they keep track of their own number of mutations.

chromosome = block.chromosome()
chromosome.mutate('deadbe?f')
chromosome.number_of_mutations()
chromosome.print()

for allelepair in chromosome.allelepairs():
  allelepair.mutate('dead')
  allelepair.number_of_mutations()
  allelepair.print()
  for gene in allelepair.genes():
    gene.mutate('d')
    gene.number_of_mutations()
    gene.print()

This facilitates mutations with genetic algorithms you may with to employ for your usecases.

Citation

If you are using binlex in a journal publication, or an open-source AI model use the following citation.

@misc{binlex,
  author = {c3rb3ru5d3d53c},
  title = {binlex: A Binary Genetic Trait Lexer Framework},
  year = {2025},
  note = {Available at \url{https://github.com/c3rb3ru5d3d53c/binlex}}
}

If the use of binlex is for corporate, personal purposes, or for generating outputs that are not open-source AI models, no citation is needed.

For example, if you use binlex to create YARA rules, no citation is needed.

This ensures that binlex stays relevant but also ensures permissive corporate and personal use.