Skip to content

Dynamic MNIST digit sequences for video instance segmentation with optical flow data.

Notifications You must be signed in to change notification settings

caganselim/flying_mnist

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Flying MNIST: A Toy Dataset for Video Instance/Object Segmentation and Optical Flow

Overview

The Flying MNIST dataset is a specialized resource crafted for video instance segmentation tasks. It leverages the classic MNIST dataset, transforming static digit images into dynamic sequences that mimic real-world videos. This dataset is ideal for researchers and practitioners in computer vision and deep learning seeking to advance video instance segmentation using optical flow information.

Key Features

  • Dynamic Digit Sequences: Flying MNIST contains sequences of MNIST digits in motion, simulating the dynamics of objects in video frames.
  • Optical Flow Data: Each sequence is paired with optical flow information, providing essential motion cues for accurate instance segmentation.
  • Variety of Scenarios: The dataset covers various scenarios, including digit interactions, occlusions, and complex trajectories.
  • Annotated Masks: Ground truth pixel-wise instance segmentation masks are included for evaluation and benchmarking purposes.

Creating the Dataset

To generate the dataset, run:

python main.py

By default, the script creates a folder "trn". Inside, the dataset has the following structure.

  • JPEGImages/: Contains the video frames in JPEG format, where each frame corresponds to a time step in a sequence.
  • OpticalFlow/: Optical flow data in dense optical flow format (e.g., .flo files) corresponding to the frames.
  • Annotations/: Ground truth instance segmentation masks in PNG format.

You can inspect the parameters inside the script to control the speed, number of digits, trajectories etc.

Visualization

To visualize the dataset, you can use player.py. To make that script run, please create a folder called "out".

python player.py

About

Dynamic MNIST digit sequences for video instance segmentation with optical flow data.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages