-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1164 from cal-itp/speedmap-deep-dive
Big Blue Bus speedmap segments deep dive
- Loading branch information
Showing
7 changed files
with
3,021 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,359 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "f9f1baa5-2de0-4152-89ec-e43880ea043d", | ||
"metadata": {}, | ||
"source": [ | ||
"# Speedmap segments \n", | ||
"* The 20th, 50th, 80th percentiles look extremely tight, why?\n", | ||
"* Is this happening in the trip files?" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "b18ab7df-9592-4897-8193-ca0ccc015930", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import geopandas as gpd\n", | ||
"import pandas as pd\n", | ||
"\n", | ||
"from segment_speed_utils import helpers\n", | ||
"from segment_speed_utils.project_vars import SEGMENT_GCS, GTFS_DATA_DICT\n", | ||
"from shared_utils import rt_dates\n", | ||
"\n", | ||
"analysis_date = rt_dates.DATES[\"apr2024\"]\n", | ||
"nov_date = rt_dates.DATES[\"nov2023\"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "48f4c06f-be94-440f-90ee-df365b4f06b4", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"TRIP_FILE = GTFS_DATA_DICT.speedmap_segments.stage4\n", | ||
"SHAPE_FILE = GTFS_DATA_DICT.speedmap_segments.shape_stop_single_segment" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "ab776438-86bc-4b86-a276-9b52aad3f454", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"operator_name = \"Big Blue Bus Schedule\"\n", | ||
"\n", | ||
"operator_route_df = helpers.import_scheduled_trips(\n", | ||
" analysis_date,\n", | ||
" columns = [\"gtfs_dataset_key\", \"name\", \n", | ||
" \"route_short_name\", \"route_long_name\", \"route_id\"],\n", | ||
" filters = [[(\"name\", \"==\", operator_name)]],\n", | ||
" get_pandas = True,\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "61f76f27-8c20-45dd-8910-ed60fafbf2d1", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"nov_trips = helpers.import_scheduled_trips(\n", | ||
" nov_date,\n", | ||
" columns = [\"gtfs_dataset_key\", \"name\", \"shape_id\", \"route_id\", \n", | ||
" \"route_long_name\", \"route_short_name\"],\n", | ||
" filters = [[(\"name\", \"==\", operator_name)]],\n", | ||
" get_pandas = True\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a5a6a7ff-8466-403a-abf5-3db4a69f42b6", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"if nov_trips.schedule_gtfs_dataset_key.iloc[0] == operator_route_df.schedule_gtfs_dataset_key.iloc[0]:\n", | ||
" bbb_key = nov_trips.schedule_gtfs_dataset_key.iloc[0]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d448d865-2546-487b-83e8-eabeaceccdcd", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def nov_shape_to_apr_route(\n", | ||
" nov_trips: pd.DataFrame,\n", | ||
" apr_route_df: pd.DataFrame,\n", | ||
" operator_key: str = bbb_key,\n", | ||
" one_shape: str = \"\"\n", | ||
"):\n", | ||
"\n", | ||
" nov_route_name = nov_trips[\n", | ||
" #(nov_trips.schedule.str.contains(operator_substring)) & \n", | ||
" (nov_trips.shape_id==one_shape)\n", | ||
" ].route_short_name.iloc[0]\n", | ||
" \n", | ||
" return apr_route_df[\n", | ||
" #(apr_route_df.name.str.contains(operator_substring)) & \n", | ||
" (apr_route_df.route_short_name==nov_route_name)\n", | ||
" ].route_id.iloc[0]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "ccee2dd5-e335-4bd3-9d83-7ebeec4bc422", | ||
"metadata": {}, | ||
"source": [ | ||
"## Trip" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "1e04594e-18ff-4283-aa9f-bd811d577882", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"trip_df = pd.read_parquet(\n", | ||
" f\"{SEGMENT_GCS}{TRIP_FILE}_{analysis_date}.parquet\",\n", | ||
" filters = [[(\"schedule_gtfs_dataset_key\", \"==\", bbb_key)]]\n", | ||
")\n", | ||
"\n", | ||
"trip_df = trip_df.assign(\n", | ||
" speed_mph = trip_df.speed_mph.round(2)\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "c2216fd7-92cf-4dce-82bb-125e2ecce384", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"olympic_shape1 = \"26450\"\n", | ||
"olympic_route1 = nov_shape_to_apr_route(\n", | ||
" nov_trips,\n", | ||
" operator_route_df,\n", | ||
" bbb_key,\n", | ||
" olympic_shape1\n", | ||
")\n", | ||
"\n", | ||
"santa_monica_shape1 = \"26437\"\n", | ||
"santa_monica_route1 = nov_shape_to_apr_route(\n", | ||
" nov_trips,\n", | ||
" operator_route_df,\n", | ||
" bbb_key,\n", | ||
" santa_monica_shape1\n", | ||
")\n", | ||
"\n", | ||
"santa_monica_shape2 = \"26509\"\n", | ||
"santa_monica_route2 = nov_shape_to_apr_route(\n", | ||
" nov_trips,\n", | ||
" operator_route_df,\n", | ||
" bbb_key,\n", | ||
" santa_monica_shape2\n", | ||
")\n", | ||
"\n", | ||
"fourth_shape1 = \"26464\"\n", | ||
"fourth_route1 = nov_shape_to_apr_route(\n", | ||
" nov_trips,\n", | ||
" operator_route_df,\n", | ||
" bbb_key,\n", | ||
" fourth_shape1\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a45b3e7d-ad9e-4f3c-8d43-2821ca2e9aed", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def filter_to_route(trip_df, operator_key, one_route, one_stop):\n", | ||
" return trip_df[\n", | ||
" (trip_df.schedule_gtfs_dataset_key==operator_key) & \n", | ||
" (trip_df.route_id==one_route) & \n", | ||
" (trip_df.stop_id==one_stop)\n", | ||
" ][[\"stop_pair_name\", \"time_of_day\", \"arrival_time\", \"speed_mph\", \n", | ||
" \"meters_elapsed\", \"sec_elapsed\"]].sort_values(\"arrival_time\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "85641403-384d-409c-8de4-ea3d525b5c1c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"green_olympic_speeds = {\n", | ||
" \"721\": \"Olympic & Prosser\",\n", | ||
" \"688\": \"Olympic & Veteran\",\n", | ||
" \"716\": \"Olympic & Colby\",\n", | ||
" \"800\": \"Olympic & Purdue\",\n", | ||
" \"801\": \"Olympic & Colby\",\n", | ||
" \"700\": \"Olympic & 3030\"\n", | ||
"}\n", | ||
"\n", | ||
"green_santa_monica_blvd_speeds = {\n", | ||
" \"370\": \"Santa Monica & 14th\",\n", | ||
" \"117\": \"Santa Monica & 14th, under\",\n", | ||
" \"1234\": \"Santa Monica & 17th\"\n", | ||
"}\n", | ||
"\n", | ||
"green_fourth_speeds = {\n", | ||
" \"668\": \"4th & San Vincente\",\n", | ||
" \"666\": \"4th & Marguerita\",\n", | ||
" \"665\": \"4th & Alta\",\n", | ||
" \"664\": \"4th & Montana\",\n", | ||
" \"505\": \"4th & Washington\",\n", | ||
" \"504\": \"4th & California\",\n", | ||
" \"502\": \"4th & Washington\",\n", | ||
" \"503\":\n", | ||
"}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "3c8ba1d6-388b-498c-bfa5-49ea1b8cb0cb", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# There are several exact speeds across trips, take a look at\n", | ||
"# interpolated stop arrivals, what are the chances this happens?\n", | ||
"# is it actually interpolating between different vp_idx values?" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "22d67801-c7c4-4726-be0c-9702a20c9c1c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"filter_to_route(trip_df, bbb_key, fourth_route1, \"502\").query('time_of_day==\"AM Peak\"')\n", | ||
"#.groupby(\"time_of_day\").agg(\n", | ||
"#{\"speed_mph\": lambda x: sorted(list(x))})" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "5f6e6bff-bdfc-42b7-a549-6d3c62c3af20", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Why are there the same speeds there?\n", | ||
"trip_df[\n", | ||
" (trip_df.schedule_gtfs_dataset_key==bbb_key) & \n", | ||
" (trip_df.route_id==fourth_route1) & \n", | ||
" (trip_df.stop_id==\"502\") & \n", | ||
" (trip_df.time_of_day==\"AM Peak\") & \n", | ||
" (trip_df.speed_mph > 15) & (trip_df.speed_mph < 16)\n", | ||
"].trip_instance_key.unique()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "93087f88-18f1-4517-a9f3-0f35a695ef6f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"INTERP_FILE = GTFS_DATA_DICT.speedmap_segments.stage3b\n", | ||
"NEAREST_VP_FILE = GTFS_DATA_DICT.rt_stop_times.stage2\n", | ||
"subset_trips = [\n", | ||
" '0d448c743a91bc96271d36ba4450ebc9',\n", | ||
" '1fbea8d720efd0dd513e98eef5383dbf',\n", | ||
" '3a2e5c9e7304d091406cb5bbdfcc27e4',\n", | ||
" 'a0f65344cb59c750934aff210b325f7e',\n", | ||
" 'b6fc33a3b002b0bc63b07b6f39d80cb0'\n", | ||
"]\n", | ||
"\n", | ||
"stop_arrivals = pd.read_parquet(\n", | ||
" f\"{SEGMENT_GCS}{INTERP_FILE}_{analysis_date}.parquet\",\n", | ||
" filters = [[(\"trip_instance_key\", \"in\", subset_trips), \n", | ||
" (\"stop_id\", \"==\", \"502\")]]\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7f85adf9-bc36-411f-a890-1aa42b655d5d", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"nearest = gpd.read_parquet(\n", | ||
" f\"{SEGMENT_GCS}{NEAREST_VP_FILE}_{analysis_date}.parquet\",\n", | ||
" filters = [[(\"trip_instance_key\", \"in\", subset_trips), \n", | ||
" (\"stop_id\", \"==\", \"502\")]]\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a231783c-0eb6-47d6-879a-6840ecfaaaff", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"for i in nearest.index:\n", | ||
" print(i)\n", | ||
" print(nearest.loc[i][\"location_timestamp_local_trio\"])\n", | ||
" #print(nearest.loc[i][\"vp_coords_trio\"])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a5a3c27f-cff5-4368-99d3-00c556239b8d", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"nearest.columns" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "36341936-6747-4ce6-aee2-aa47b6d3c283", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.13" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.