- Solve captcha using TensorFlow.
- Learn CNN and TensorFlow by a practical project.
Follow the steps, run the code, and it works!
the accuracy of 4 digits version can be as high as 99.8%!
There are several more steps to put this prototype on production.
Ping me for paid technical supports.
old code that using tensorflow 1.x is moved to tensorflow_v1.
# generating test data
$ python3 datasets/gen_captcha.py -d --npi=4 -n 1
- Model: AlexNet
- datasets:
- training images: 21k
- testing images: 9k
- Accuracy: 87.6%
if we increase the dataset by 10x, the accuracy increases to 98.8%. we can further increase the accuracy to 99.8% using 1M traning images.
here is the source code and running logs: captcha-solver-tf2-4digits-AlexNet-98.8.ipynb
Images, Ground Truth and Predicted Values:
there is 1 predicton error out of the 20 examples below. 9871 -> 9821
Accuracy and Loss History:
Model Structure:
- 3 convolutional layers, followed by 2x2 max pooling layer each.
- 1 flatten layer
- 2 dense layer
$ python datasets/gen_captcha.py -h
usage: gen_captcha.py [-h] [-n N] [-t T] [-d] [-l] [-u] [--npi NPI]
[--data_dir DATA_DIR]
optional arguments:
-h, --help show this help message and exit
-n N epoch number of character permutations.
-t T ratio of test dataset.
-d, --digit use digits in dataset.
-l, --lower use lowercase in dataset.
-u, --upper use uppercase in dataset.
--npi NPI number of characters per image.
--data_dir DATA_DIR where data will be saved.
examples:
1 epoch will have 10 images, generate 2000 epoches for training.
generating the dataset:
$ python datasets/gen_captcha.py -d --npi 1 -n 2000
10 choices: 0123456789
generating 2000 epoches of captchas in ./images/char-1-epoch-2000/train
generating 400 epoches of captchas in ./images/char-1-epoch-2000/test
write meta info in ./images/char-1-epoch-2000/meta.json
preview the dataset:
$ python datasets/base.py images/char-1-epoch-2000/
========== Meta Info ==========
num_per_image: 1
label_choices: 0123456789
height: 100
width: 60
n_epoch: 2000
label_size: 10
==============================
train images: (20000, 100, 60), labels: (20000, 10)
test images: (4000, 100, 60), labels: (4000, 10)
1 epoch will have 62*61=3782
images, generate 10 epoches for training.
generating the dataset:
$ python datasets/gen_captcha.py -dlu --npi 2 -n 10
62 choices: 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
generating 10 epoches of captchas in ./images/char-2-epoch-10/train
generating 2 epoches of captchas in ./images/char-2-epoch-10/test
write meta info in ./images/char-2-epoch-10/meta.json
preview the dataset:
========== Meta Info ==========
num_per_image: 2
label_choices: 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
height: 100
width: 80
n_epoch: 10
label_size: 62
==============================
train images: (37820, 100, 80), labels: (37820, 124)
test images: (7564, 100, 80), labels: (7564, 124)
1 epoch has 10*9*8*7=5040
images, generate 10 epoches for training.
generating the dataset:
$ python datasets/gen_captcha.py -d --npi=4 -n 6
10 choices: 0123456789
generating 6 epoches of captchas in ./images/char-4-epoch-6/train
generating 1 epoches of captchas in ./images/char-4-epoch-6/test
write meta info in ./images/char-4-epoch-6/meta.json
preview the dataset:
$ python datasets/base.py images/char-4-epoch-6/
========== Meta Info ==========
num_per_image: 4
label_choices: 0123456789
height: 100
width: 120
n_epoch: 6
label_size: 10
==============================
train images: (30240, 100, 120), labels: (30240, 40)
test images: (5040, 100, 120), labels: (5040, 40)