Skip to content

Commit

Permalink
add starcoder2 support (#406)
Browse files Browse the repository at this point in the history
Co-authored-by: charrli <charrli@tencent.com>
  • Loading branch information
shaonianyr and charrli authored Apr 6, 2024
1 parent eb85f67 commit 33dfb04
Show file tree
Hide file tree
Showing 4 changed files with 144 additions and 0 deletions.
1 change: 1 addition & 0 deletions awq/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,3 +15,4 @@
from .mixtral import MixtralAWQForCausalLM
from .qwen2 import Qwen2AWQForCausalLM
from .gemma import GemmaAWQForCausalLM
from .starcoder2 import Starcoder2AWQForCausalLM
1 change: 1 addition & 0 deletions awq/models/auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
"llava": LlavaAWQForCausalLM,
"qwen2": Qwen2AWQForCausalLM,
"gemma": GemmaAWQForCausalLM,
"starcoder2": Starcoder2AWQForCausalLM,
}


Expand Down
1 change: 1 addition & 0 deletions awq/models/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,7 @@
"llava": "AutoModelForVision2Seq",
"qwen2": "AutoModelForCausalLM",
"gemma": "AutoModelForCausalLM",
"starcoder2": "AutoModelForCausalLM",
}


Expand Down
141 changes: 141 additions & 0 deletions awq/models/starcoder2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
import tqdm
from typing import List, Tuple
from .base import BaseAWQForCausalLM
from awq.utils.fused_utils import fuse_qkv
from awq.modules.fused.block import LlamaLikeBlock
from awq.modules.fused.model import LlamaLikeModel
from transformers.models.starcoder2.modeling_starcoder2 import (
Starcoder2ForCausalLM as OldStarcoder2ForCausalLM,
Starcoder2DecoderLayer as OldStarcoder2DecoderLayer,
)
from awq.modules.fused.norm import FasterTransformerRMSNorm


class Starcoder2AWQForCausalLM(BaseAWQForCausalLM):
layer_type = "Starcoder2DecoderLayer"
max_seq_len_key = "max_position_embeddings"

@staticmethod
def fuse_layers(model: OldStarcoder2ForCausalLM):
fuser = Starcoder2Fuser(model)
fuser.fuse_transformer()

@staticmethod
def get_model_layers(model: OldStarcoder2ForCausalLM):
return model.model.layers

@staticmethod
def get_act_for_scaling(module: OldStarcoder2DecoderLayer):
return dict(
is_scalable=True,
scale_name="mlp.act",
scale_layer=module.mlp.act,
scale_shape=module.mlp.c_fc.out_features,
)
# return dict(is_scalable=False)

@staticmethod
def move_embed(model: OldStarcoder2ForCausalLM, device):
model.model.embed_tokens = model.model.embed_tokens.to(device)

@staticmethod
def get_layers_for_scaling(module: OldStarcoder2DecoderLayer, input_feat, module_kwargs):
layers = []

# attention input
layers.append(
dict(
prev_op=module.input_layernorm,
layers=[
module.self_attn.q_proj,
module.self_attn.k_proj,
module.self_attn.v_proj,
],
inp=input_feat["self_attn.q_proj"],
module2inspect=module.self_attn,
kwargs=module_kwargs,
)
)

# attention out
if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape:
layers.append(
dict(
prev_op=module.self_attn.v_proj,
layers=[module.self_attn.o_proj],
inp=input_feat["self_attn.o_proj"],
)
)

# linear 1
layers.append(
dict(
prev_op=module.post_attention_layernorm,
layers=[module.mlp.c_fc],
inp=input_feat["mlp.c_fc"],
module2inspect=module.mlp,
)
)

# linear 2
layers.append(
dict(
prev_op=module.mlp.act,
layers=[module.mlp.c_proj],
inp=input_feat["mlp.c_proj"],
)
)

return layers

class Starcoder2Fuser:
def __init__(self, model: OldStarcoder2ForCausalLM):
self.model = model

self.starcoder2_blocks: List[Tuple[str, OldStarcoder2DecoderLayer]] = [
(name, module)
for name, module in self.model.named_modules()
if "Starcoder2DecoderLayer".lower() in module.__class__.__name__.lower()
]

def fuse_transformer(self):
blocks = []

module: OldStarcoder2DecoderLayer
for module in tqdm.tqdm(self.model.model.layers, desc="Fusing layers..."):
device = next(iter(module.state_dict().values())).device
qkv = fuse_qkv(
module,
module.self_attn.q_proj,
module.self_attn.k_proj,
module.self_attn.v_proj,
)
norm_1 = FasterTransformerRMSNorm(
module.input_layernorm.weight, module.input_layernorm.eps
)
norm_2 = FasterTransformerRMSNorm(
module.post_attention_layernorm.weight,
module.post_attention_layernorm.eps,
)
blocks.append(
LlamaLikeBlock(
hidden_size=self.model.config.hidden_size,
n_heads=self.model.config.num_attention_heads,
n_kv_heads=self.model.config.num_key_value_heads,
qkv_layer=qkv,
o_proj=module.self_attn.o_proj,
mlp=module.mlp,
norm_1=norm_1,
norm_2=norm_2,
dev=device,
max_seq_len=self.model.config.max_seq_len,
)
)

self.model.model = LlamaLikeModel(
self.model.config.vocab_size,
blocks,
self.model.model.embed_tokens,
self.model.model.norm,
)
setattr(self.model.model, "blocks", self.model.model.blocks)

0 comments on commit 33dfb04

Please sign in to comment.