-
Notifications
You must be signed in to change notification settings - Fork 224
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
dfe396a
commit 4b10b31
Showing
4 changed files
with
141 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
import tqdm | ||
from typing import List, Tuple | ||
from .base import BaseAWQForCausalLM | ||
from awq.utils.fused_utils import fuse_qkv | ||
from awq.modules.fused.block import LlamaLikeBlock | ||
from awq.modules.fused.model import LlamaLikeModel | ||
from transformers.models.exaone.modeling_exaone import ( | ||
ExaoneBlock as OldExaoneBlock, | ||
ExaoneForCausalLM as OldExaoneForCausalLM, | ||
) | ||
from awq.modules.fused.norm import FasterTransformerRMSNorm | ||
|
||
|
||
class ExaoneAWQForCausalLM(BaseAWQForCausalLM): | ||
layer_type = "ExaoneBlock" | ||
max_seq_len_key = "max_position_embeddings" | ||
|
||
@staticmethod | ||
def fuse_layers(model: OldExaoneForCausalLM): | ||
fuser = LlamaFuser(model) | ||
fuser.fuse_transformer() | ||
|
||
@staticmethod | ||
def get_model_layers(model: OldExaoneForCausalLM): | ||
return model.transformer.h | ||
|
||
@staticmethod | ||
def get_act_for_scaling(module: OldExaoneBlock): | ||
return dict(is_scalable=False) | ||
|
||
@staticmethod | ||
def move_embed(model: OldExaoneForCausalLM, device: str): | ||
model.transformer.wte = model.transformer.wte.to(device) | ||
|
||
@staticmethod | ||
def get_layers_for_scaling(module: OldExaoneBlock, input_feat, module_kwargs): | ||
layers = [] | ||
|
||
# attention input | ||
layers.append( | ||
dict( | ||
prev_op=module.ln_1, | ||
layers=[ | ||
module.attn.attention.q_proj, | ||
module.attn.attention.k_proj, | ||
module.attn.attention.v_proj, | ||
], | ||
inp=input_feat["attn.attention.q_proj"], | ||
module2inspect=module.attn.attention, | ||
kwargs=module_kwargs, | ||
) | ||
) | ||
|
||
# attention out | ||
# Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696 | ||
if module.attn.attention.v_proj.weight.shape == module.attn.attention.out_proj.weight.shape: | ||
layers.append( | ||
dict( | ||
prev_op=module.attn.attention.v_proj, | ||
layers=[module.attn.attention.out_proj], | ||
inp=input_feat["attn.attention.out_proj"], | ||
) | ||
) | ||
|
||
# linear 1 | ||
layers.append( | ||
dict( | ||
prev_op=module.ln_2, | ||
layers=[module.mlp.c_fc_0, module.mlp.c_fc_1], | ||
inp=input_feat["mlp.c_fc_0"], | ||
module2inspect=module.mlp, | ||
) | ||
) | ||
|
||
# linear 2 | ||
layers.append( | ||
dict( | ||
prev_op=module.mlp.c_fc_1, | ||
layers=[module.mlp.c_proj], | ||
inp=input_feat["mlp.c_proj"], | ||
) | ||
) | ||
|
||
return layers | ||
|
||
|
||
class LlamaFuser: | ||
def __init__(self, model: OldExaoneForCausalLM): | ||
self.model = model | ||
|
||
self.llama_blocks: List[Tuple[str, OldExaoneBlock]] = [ | ||
(name, module) | ||
for name, module in self.model.named_modules() | ||
if "LlamaDecoderLayer".lower() in module.__class__.__name__.lower() | ||
] | ||
|
||
def fuse_transformer(self): | ||
blocks = [] | ||
|
||
module: OldExaoneBlock | ||
for module in tqdm.tqdm(self.model.transformer.h, desc="Fusing layers..."): | ||
device = next(iter(module.state_dict().values())).device | ||
qkv = fuse_qkv( | ||
module, | ||
module.attn.attention.q_proj, | ||
module.attn.attention.k_proj, | ||
module.attn.attention.v_proj, | ||
) | ||
norm_1 = FasterTransformerRMSNorm( | ||
module.ln_1.weight, module.ln_1.eps | ||
) | ||
norm_2 = FasterTransformerRMSNorm( | ||
module.ln_2.weight, | ||
module.ln_2.eps, | ||
) | ||
blocks.append( | ||
LlamaLikeBlock( | ||
hidden_size=self.model.config.hidden_size, | ||
n_heads=self.model.config.num_attention_heads, | ||
n_kv_heads=self.model.config.num_key_value_heads, | ||
qkv_layer=qkv, | ||
o_proj=module.attn.attention.out_proj, | ||
mlp=module.mlp, | ||
norm_1=norm_1, | ||
norm_2=norm_2, | ||
dev=device, | ||
max_seq_len=self.model.config.max_seq_len, | ||
rope_theta=self.model.config.rope_theta, | ||
) | ||
) | ||
|
||
self.model.transformer = LlamaLikeModel( | ||
self.model.config.vocab_size, | ||
blocks, | ||
self.model.transformer.wte, | ||
self.model.transformer.ln_f, | ||
) | ||
setattr(self.model.transformer, "blocks", self.model.transformer.blocks) |