-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #282 from centre-for-humanities-computing/convert_…
…domsdatabasen Convert domsdatabasen
- Loading branch information
Showing
1 changed file
with
87 additions
and
0 deletions.
There are no files selected for viewing
87 changes: 87 additions & 0 deletions
87
data-processing/scripts/convert_domsdatabasen_to_jsonlgz.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
""" | ||
downloads dataset and save it as jsonl.gz file with the format: | ||
{ | ||
"id": "...", # MANDATORY: source-specific identifier | ||
"text": "foo", # MANDATORY: textual content of the document | ||
"source": "...", # MANDATORY: source of the data, such as peS2o, common-crawl, etc. | ||
"added": "...", # OPTIONAL: timestamp ai2 acquired this data | ||
"created": "..." # OPTIONAL: timestamp when orig document was created (best-guess if not available) | ||
"metadata": {...} # OPTIONAL: source-specific metadata | ||
} | ||
The dataset contains reference and summaries. As we use this dataset for pretraining we | ||
concatenate reference and summary | ||
""" | ||
import datetime | ||
|
||
from datasets import Dataset, DatasetDict, load_dataset | ||
|
||
oldest_case = "1855-02-28" | ||
date_added = datetime.datetime.now().strftime("%Y-%m-%d") | ||
case_time_span = ", ".join([oldest_case, date_added]) | ||
|
||
|
||
def reformat_dataset(ds: Dataset) -> Dataset: | ||
# current keys: | ||
# ['case_id', 'Overskrift', 'Afgørelsesstatus', 'Faggruppe', 'Ret', 'Rettens sagsnummer', 'Sagstype', 'Instans', 'Domsdatabasens sagsnummer', 'Sagsemner', 'Særlige retsskridt', 'Sagsdeltagere', 'Dørlukning', 'Løftet ud af småsagsprocessen', 'Anerkendelsespåstand', 'Politiets journalnummer', 'Påstandsbeløb', 'Sagskomplekser', 'text', 'text_anonymized', 'text_len', 'text_anon_len'] | ||
|
||
# rename celex_id to id | ||
ds = ds.rename_column("case_id", "id") | ||
|
||
# add source column | ||
source_column = ["domsdatabasen"] * len(ds) # type: ignore | ||
ds = ds.add_column("source", source_column) # type: ignore | ||
|
||
# add created column | ||
created_column = [case_time_span] * len(ds) # type: ignore | ||
ds = ds.add_column("created", created_column) # type: ignore | ||
|
||
# add added column | ||
added_column = [date_added] * len(ds) # type: ignore | ||
ds = ds.add_column("added", added_column) # type: ignore | ||
|
||
metadata_keys = ['Overskrift', 'Afgørelsesstatus', 'Faggruppe', 'Ret', 'Rettens sagsnummer', 'Sagstype', 'Instans', 'Domsdatabasens sagsnummer', 'Sagsemner', 'Særlige retsskridt', 'Sagsdeltagere', 'Dørlukning', 'Løftet ud af småsagsprocessen', 'Anerkendelsespåstand', 'Politiets journalnummer', 'Påstandsbeløb', 'Sagskomplekser', 'text_len'] | ||
# add metadata | ||
ds = ds.map( # type: ignore | ||
lambda x: { # type: ignore | ||
"text": x["text"], | ||
"metadata": { | ||
k: x[k] for k in metadata_keys # type: ignore | ||
} | ||
}, | ||
) # type: ignore | ||
ds = ds.remove_columns(["text_anonymized", "text_anon_len"]) # type: ignore | ||
ds = ds.remove_columns(metadata_keys) # type: ignore | ||
|
||
return ds # type: ignore | ||
|
||
|
||
def main(): | ||
ds = load_dataset("alexandrainst/domsdatabasen") | ||
assert isinstance(ds, DatasetDict) | ||
# We take only the train dataset in case this dataset is used for model evaulation | ||
ds = ds["train"] | ||
assert isinstance(ds, Dataset) | ||
|
||
# reformat | ||
ds = reformat_dataset(ds) | ||
|
||
# save to jsonl.gz | ||
ds.to_json("domsdatabasen.jsonl.gz", orient="records", lines=True, compression="gzip") # type: ignore | ||
|
||
|
||
if __name__ == "__main__": | ||
main() | ||
|
||
# # test that it load back in | ||
ds = load_dataset("json", data_files="domsdatabasen.jsonl.gz", split="train") | ||
assert isinstance(ds[0], dict) # type: ignore | ||
|
||
# test that it can be streamed | ||
ds = load_dataset( | ||
"json", | ||
data_files="domsdatabasen.jsonl.gz", | ||
split="train", | ||
streaming=True, | ||
) | ||
example = next(iter(ds)) # type: ignore | ||
assert isinstance(example, dict) |