Skip to content

chenhonghua/MVIP-NeRF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MVIP-NeRF: Multi-view 3D Inpainting on NeRF Scenes via Diffusion Prior

Introduction

This repository is for our CVPR 2024 paper 'MVIP-NeRF: Multi-view 3D Inpainting on NeRF Scenes via Diffusion Prior'.

Quick Start

Dependencies and Environment

conda create -n MVIPnerf python=3.8
conda activate MVIPnerf
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install -r requirements.txt
pip install -r requirements_df.txt
pip install lpips
pip install ConfigArgParse

Dataset preparation

Take SPIn-NeRF dataset as example:

1
├── images
│   ├── IMG_2707.jpg
│   ├── IMG_2708.jpg
│   ├── ...
│   └── IMG_2736.jpg
└── images_4
    ├── IMG_2707.png
    ├── IMG_2708.png
    ├── ...
    ├── IMG_2736.png
    └── label
        ├── IMG_2707.png
        ├── IMG_2708.png
        ├── ...
        └── IMG_2736.png
    └── Depth
        ├── IMG_2707.png
        ├── IMG_2708.png
        ├── ...
        └── IMG_2736.png

Also, for easier usage of the SPIn-NeRF dataset, we have uploaded one example. Note that our method does not rely on explicit 2D inpaintings results, although we provided the inpainted inputs. Please click here to download the used dataset. Note that if you run our code, just leave the masked area black. If you use them, please cite SPIn-NeRF and Remove-NeRF.

Quick Running

python DS_NeRF/run.py --config DS_NeRF/config/config_1.txt

Key parameters in the config file

datadir: folder for the dataset
factor: downscale of the image resolution of the inpainted scene 
is_normal_guidance: control whether using normal guidance
is_colla_guidance: control whether using multi-view guidance
text: text prompt for the inpainted scene
normalmap_render_factor: we use a factor to downscale the rendered normal map, due to the RAM limitation

TODO

  • Release the code.
  • Release video results.

Acknowledgement

The repository is based on SPIn-NeRF and stable dreamfusion

License

This project is licensed under NTU S-Lab License 1.0. Redistribution and use should follow this license.

BibTeX

If you find our MVIP-NeRF useful in your work, please consider citing it:

@inproceedings{MVIPNeRF,
      title={MVIP-NeRF: Multi-view 3D Inpainting on NeRF Scenes via Diffusion Prior}, 
      author={Honghua Chen and Chen Change Loy and Xingang Pan},
      year={2024},
      booktitle={CVPR},
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages