This repository is for our CVPR 2024 paper 'MVIP-NeRF: Multi-view 3D Inpainting on NeRF Scenes via Diffusion Prior'.
conda create -n MVIPnerf python=3.8
conda activate MVIPnerf
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install -r requirements.txt
pip install -r requirements_df.txt
pip install lpips
pip install ConfigArgParse
Take SPIn-NeRF dataset as example:
1
├── images
│ ├── IMG_2707.jpg
│ ├── IMG_2708.jpg
│ ├── ...
│ └── IMG_2736.jpg
└── images_4
├── IMG_2707.png
├── IMG_2708.png
├── ...
├── IMG_2736.png
└── label
├── IMG_2707.png
├── IMG_2708.png
├── ...
└── IMG_2736.png
└── Depth
├── IMG_2707.png
├── IMG_2708.png
├── ...
└── IMG_2736.png
Also, for easier usage of the SPIn-NeRF dataset, we have uploaded one example. Note that our method does not rely on explicit 2D inpaintings results, although we provided the inpainted inputs. Please click here to download the used dataset. Note that if you run our code, just leave the masked area black. If you use them, please cite SPIn-NeRF and Remove-NeRF.
python DS_NeRF/run.py --config DS_NeRF/config/config_1.txt
datadir: folder for the dataset
factor: downscale of the image resolution of the inpainted scene
is_normal_guidance: control whether using normal guidance
is_colla_guidance: control whether using multi-view guidance
text: text prompt for the inpainted scene
normalmap_render_factor: we use a factor to downscale the rendered normal map, due to the RAM limitation
- Release the code.
- Release video results.
The repository is based on SPIn-NeRF and stable dreamfusion
This project is licensed under NTU S-Lab License 1.0. Redistribution and use should follow this license.
If you find our MVIP-NeRF useful in your work, please consider citing it:
@inproceedings{MVIPNeRF,
title={MVIP-NeRF: Multi-view 3D Inpainting on NeRF Scenes via Diffusion Prior},
author={Honghua Chen and Chen Change Loy and Xingang Pan},
year={2024},
booktitle={CVPR},
}