dataanalysiscompare is a lightweight Python package that helps you quickly compare four popular data‑analysis tools—Excel, Power BI, SQL, and Python—based on your specific needs, project requirements, or skill level. By leveraging a language model (LLM) under the hood, the package returns a clear, standardized comparison that includes key differentiators, best‑use cases, learning curves, and integration capabilities.
- Instant, structured comparison of Excel, Power BI, SQL, and Python.
- Works with the default ChatLLM7 model (no extra setup required) or any other LangChain‑compatible LLM you prefer.
- Simple API: just pass a natural‑language description of your use case.
- Returns a list of strings that can be easily displayed, logged, or further processed.
pip install dataanalysiscomparefrom dataanalysiscompare import dataanalysiscompare
# Simple call using the default LLM (ChatLLM7)
user_query = """
I have a medium‑sized sales dataset in CSV format.
I need to clean the data, create visual dashboards, and share insights with my team.
I have basic Excel skills but want something more powerful.
"""
result = dataanalysiscompare(user_input=user_query)
for line in result:
print(line)- Excel: Great for quick calculations and ad‑hoc analysis but limited for large datasets.
- Power BI: Excellent for interactive dashboards and sharing reports; steeper learning curve.
- SQL: Ideal for querying large relational datasets; requires knowledge of SQL syntax.
- Python: Most flexible; powerful libraries (pandas, matplotlib, seaborn) but higher learning curve.
...
If you prefer to use a different LangChain LLM (e.g., OpenAI, Anthropic, Google Gemini), simply pass the instantiated model via the llm argument.
from langchain_openai import ChatOpenAI
from dataanalysiscompare import dataanalysiscompare
llm = ChatOpenAI(model="gpt-4o-mini")
response = dataanalysiscompare(
user_input="I need to automate monthly reporting from a PostgreSQL database.",
llm=llm
)
print(response)from langchain_anthropic import ChatAnthropic
from dataanalysiscompare import dataanalysiscompare
llm = ChatAnthropic(model_name="claude-3-haiku-20240307")
response = dataanalysiscompare(
user_input="My team wants a low‑code solution for building interactive charts.",
llm=llm
)
print(response)from langchain_google_genai import ChatGoogleGenerativeAI
from dataanalysiscompare import dataanalysiscompare
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash")
response = dataanalysiscompare(
user_input="I need to integrate data from Excel and a MySQL database into a single dashboard.",
llm=llm
)
print(response)The default LLM7 free‑tier limits are sufficient for most usage. If you need higher limits, provide your own API key:
from dataanalysiscompare import dataanalysiscompare
response = dataanalysiscompare(
user_input="Describe the best data‑analysis tool for a beginner who wants to learn data science.",
api_key="YOUR_LLM7_API_KEY"
)
print(response)You can also set the environment variable LLM7_API_KEY and omit the api_key argument.
def dataanalysiscompare(
user_input: str,
api_key: Optional[str] = None,
llm: Optional[BaseChatModel] = None
) -> List[str]:
"""
Compare Excel, Power BI, SQL, and Python based on the provided user description.
Parameters
----------
user_input: str
Natural‑language description of the data‑analysis needs, project, or skill level.
llm: Optional[BaseChatModel]
A LangChain LLM instance to use. If omitted, the default ChatLLM7 is used.
api_key: Optional[str]
API key for LLM7. If omitted, the function looks for the LLM7_API_KEY environment
variable or falls back to the free tier.
Returns
-------
List[str]
A list of strings containing the comparative insights.
"""langchain-corelangchain-llm7llmatch-messagesre,os,typing(standard library)
All dependencies are installed automatically with the package.
- Source code / Issues: https://github....
- LLM7 documentation: https://pypi.org/project/langchain-llm7/
- LangChain docs: https://docs.langchain.com/
If you encounter any problems or have feature requests, please open an issue on GitHub.
Eugene Evstafev
📧 Email: hi@euegne.plus
🐙 GitHub: chigwell
This project is licensed under the MIT License – see the LICENSE file for details.