refactor-llm-analyzer is a Python package designed to facilitate structured and reliable analysis of user input related to software refactoring in the context of large language models (LLMs). It processes text-based discussions or questions to extract key themes, concerns, or strategies, enabling consistent interpretation and supporting automated decision-making or knowledge extraction. The package uses pattern matching and LLM capabilities to produce structured summaries or insights from user input.
Install the package via pip:
pip install refactor_llm_analyzerHere's an example of how to use the package:
from refactor_llm_analyzer import refactor_llm_analyzer
user_input = "How can I improve the readability of my code by refactoring the functions?"
response = refactor_llm_analyzer(user_input)
print(response)user_input(str): The user input text to process.llm(Optional[BaseChatModel]): An optional LangChain LLM instance to use. If not provided, the default ChatLLM7 will be used.api_key(Optional[str]): The API key for LLM7. If not provided, it will be retrieved from the environment variableLLM7_API_KEY.
This package uses ChatLLM7 from the langchain_llm7 module by default. Developers can supply their own language model instances for flexibility and customization. Supported integrations include:
- OpenAI GPT models
- Anthropic models
- Google Generative AI
from langchain_openai import ChatOpenAI
from refactor_llm_analyzer import refactor_llm_analyzer
llm = ChatOpenAI()
response = refactor_llm_analyzer(user_input, llm=llm)
print(response)from langchain_anthropic import ChatAnthropic
from refactor_llm_analyzer import refactor_llm_analyzer
llm = ChatAnthropic()
response = refactor_llm_analyzer(user_input, llm=llm)
print(response)from langchain_google_genai import ChatGoogleGenerativeAI
from refactor_llm_analyzer import refactor_llm_analyzer
llm = ChatGoogleGenerativeAI()
response = refactor_llm_analyzer(user_input, llm=llm)
print(response)The default rate limits for LLM7’s free tier are sufficient for most use cases. To increase limits, pass your API key via the environment variable LLM7_API_KEY or directly when calling the function:
response = refactor_llm_analyzer(user_input, api_key="your_api_key")You can obtain a free API key by registering at https://token.llm7.io/.
- The package relies on
ChatLLM7from langchain_llm7 - Documentation for other supported LLMs:
- OpenAI: https://docs.openai.com/
- Anthropic: https://console.anthropic.com/
- Google Generative AI: https://cloud.google.com/vertex-ai/docs
- Developer: Eugene Evstafev
- Email: hi@eugene.plus
- GitHub: chigwell
- Issues: GitHub Issues