-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
2,078 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,5 @@ | ||
^evalRTPF\.Rproj$ | ||
^\.Rproj\.user$ | ||
^\.github$ | ||
^\.github$ | ||
^doc$ | ||
^Meta$ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,3 @@ | ||
.Rproj.user | ||
/doc/ | ||
/Meta/ |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
## ----setup, include = FALSE--------------------------------------------------- | ||
knitr::opts_chunk$set( | ||
collapse = TRUE, | ||
comment = "#>" | ||
) | ||
options(digits = 3) | ||
|
||
## ----load, message = F, include = FALSE--------------------------------------- | ||
# required dependencies | ||
require(dplyr) | ||
require(tidyr) | ||
# require(ggplot2) | ||
require(gridExtra) | ||
require(RSpectra) | ||
require(rlist) | ||
|
||
## ----include = FALSE---------------------------------------------------------- | ||
library(evalRTPF) | ||
L <- function(x, y){ | ||
return ( (x - y)^2 ) | ||
} | ||
|
||
## ----------------------------------------------------------------------------- | ||
library(ggplot2) | ||
library(tibble) | ||
library(MASS) | ||
nsamp <- 100 # number of in-game events | ||
ngame <- 100 # number of games | ||
|
||
#' Parameter for generating the eigenvalues, and p-values | ||
D <- 10 # Number of eigenvalues to keep | ||
N_MC <- 5000 # for simulating the p-value | ||
L <- function(x, y) { | ||
return((x - y) ^ 2) | ||
} | ||
|
||
# Data generation ---------------------------------------------------------= | ||
df_equ <- df_gen(N = nsamp, Ngame = ngame) %>% | ||
group_by(grid) %>% | ||
mutate( | ||
p_bar_12 = mean(phat_A - phat_B), | ||
diff_non_cent = phat_A - phat_B, | ||
diff_cent = phat_A - phat_B - p_bar_12 | ||
) %>% ungroup() | ||
|
||
# Apply our test ---------------------------------------------------------- | ||
|
||
Z <- df_equ %>% group_by(grid) %>% | ||
summarise(delta_n = mean(L(phat_A, Y) - L(phat_B, Y))) %>% | ||
{sum((.)$delta_n ^ 2) / nsamp * ngame} | ||
|
||
temp <- df_equ %>% group_split(grid, .keep = FALSE) | ||
|
||
eigV_hat <- lapply(1:nsamp, function(i) { | ||
sapply(1:nsamp, function(j) { | ||
as.numeric(temp[[i]]$diff_non_cent %*% temp[[j]]$diff_non_cent / ngame) | ||
}) | ||
}) %>% list.rbind %>% { | ||
eigs_sym( | ||
A = (.), | ||
k = D, | ||
which = "LM", | ||
opts = list(retvec = FALSE) | ||
)$values | ||
} %>% | ||
{ | ||
(.) / nsamp | ||
} | ||
|
||
|
||
|
||
eigV_til <- lapply(1:nsamp, function(i) { | ||
sapply(1:nsamp, function(j) { | ||
as.numeric(temp[[i]]$diff_cent %*% temp[[j]]$diff_cent / ngame) | ||
}) | ||
}) %>% list.rbind %>% { | ||
eigs_sym( | ||
A = (.), | ||
k = D, | ||
which = "LM", | ||
opts = list(retvec = FALSE) | ||
)$values | ||
} %>% | ||
{ | ||
(.) / nsamp | ||
} | ||
|
||
MC_hat <- sapply(1:N_MC, function(x) { | ||
crossprod(eigV_hat, rchisq(D, df = 1)) | ||
}) | ||
|
||
q_90_hat <- quantile(MC_hat, 0.90) | ||
q_95_hat <- quantile(MC_hat, 0.95) | ||
q_99_hat <- quantile(MC_hat, 0.99) | ||
|
||
MC_til <- sapply(1:N_MC, function(x) { | ||
crossprod(eigV_til, rchisq(D, df = 1)) | ||
}) | ||
|
||
q_90_til <- quantile(MC_til, 0.90) | ||
q_95_til <- quantile(MC_til, 0.95) | ||
q_99_til <- quantile(MC_til, 0.99) | ||
|
||
p_hat <- 1 - ecdf(MC_hat)(Z) | ||
|
||
tibble( | ||
type = c("non-center", "center"), | ||
Z = rep(Z, 2), | ||
"pval" = c(p_hat, p_hat), | ||
"90%" = c(q_90_hat, q_90_til), | ||
"95%" = c(q_95_hat, q_95_til), | ||
"99%" = c(q_99_hat, q_99_til)) | ||
|
||
## ----function wrappers-------------------------------------------------------- | ||
to_center <- FALSE | ||
|
||
ZZ <- calc_Z(df = df_equ, pA = "phat_A", pB = "phat_B", Y = "Y", nsamp = nsamp, ngame = ngame) | ||
eigg <- calc_eig(df = df_equ, n_eig = D, ngame = ngame, | ||
nsamp = nsamp, grid = "grid", cent = to_center) | ||
oh <- calc_pval(ZZ, eig = eigg, quan = c(0.90, 0.95, 0.99), n_MC = N_MC) | ||
|
||
|
||
temp <- calc_L_s2(df = df_equ, pA = "phat_A", pB = "phat_B") | ||
|
||
plot_pcb(df = temp) | ||
|
||
tibble( | ||
type = ifelse(to_center, "center", "non-center"), | ||
Z = ZZ, | ||
pval = oh$p_val, | ||
"90%" = oh$quantile[1], | ||
"95%" = oh$quantile[2], | ||
"99%" = oh$quantile[3] | ||
) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
--- | ||
title: "evalRTPF guide" | ||
subtitle: "EVALuating Real-Time Probabilistic Forecast" | ||
author: | | ||
| Chi-Kuang Yeh, Gregory Rice, Joel A. Dubin | ||
| University of Waterloo | ||
date: "`r Sys.Date()`" | ||
output: | ||
rmarkdown::html_document: | ||
toc: yes | ||
toc_float: true | ||
theme: readable | ||
highlight: tango | ||
rmarkdown::html_vignette: | ||
toc: yes | ||
vignette: > | ||
%\VignetteIndexEntry{Demo} | ||
%\VignetteEngine{knitr::rmarkdown} | ||
%\VignetteEncoding{UTF-8} | ||
--- | ||
|
||
```{r setup, include = FALSE} | ||
knitr::opts_chunk$set( | ||
collapse = TRUE, | ||
comment = "#>" | ||
) | ||
options(digits = 3) | ||
``` | ||
|
||
```{r load, message = F, include = FALSE} | ||
# required dependencies | ||
require(dplyr) | ||
require(tidyr) | ||
# require(ggplot2) | ||
require(gridExtra) | ||
require(RSpectra) | ||
require(rlist) | ||
``` | ||
|
||
```{r, include = FALSE} | ||
library(evalRTPF) | ||
L <- function(x, y){ | ||
return ( (x - y)^2 ) | ||
} | ||
``` | ||
|
||
```{r} | ||
library(ggplot2) | ||
library(tibble) | ||
library(MASS) | ||
nsamp <- 100 # number of in-game events | ||
ngame <- 100 # number of games | ||
#' Parameter for generating the eigenvalues, and p-values | ||
D <- 10 # Number of eigenvalues to keep | ||
N_MC <- 5000 # for simulating the p-value | ||
L <- function(x, y) { | ||
return((x - y) ^ 2) | ||
} | ||
# Data generation ---------------------------------------------------------= | ||
df_equ <- df_gen(N = nsamp, Ngame = ngame) %>% | ||
group_by(grid) %>% | ||
mutate( | ||
p_bar_12 = mean(phat_A - phat_B), | ||
diff_non_cent = phat_A - phat_B, | ||
diff_cent = phat_A - phat_B - p_bar_12 | ||
) %>% ungroup() | ||
# Apply our test ---------------------------------------------------------- | ||
Z <- df_equ %>% group_by(grid) %>% | ||
summarise(delta_n = mean(L(phat_A, Y) - L(phat_B, Y))) %>% | ||
{sum((.)$delta_n ^ 2) / nsamp * ngame} | ||
temp <- df_equ %>% group_split(grid, .keep = FALSE) | ||
eigV_hat <- lapply(1:nsamp, function(i) { | ||
sapply(1:nsamp, function(j) { | ||
as.numeric(temp[[i]]$diff_non_cent %*% temp[[j]]$diff_non_cent / ngame) | ||
}) | ||
}) %>% list.rbind %>% { | ||
eigs_sym( | ||
A = (.), | ||
k = D, | ||
which = "LM", | ||
opts = list(retvec = FALSE) | ||
)$values | ||
} %>% | ||
{ | ||
(.) / nsamp | ||
} | ||
eigV_til <- lapply(1:nsamp, function(i) { | ||
sapply(1:nsamp, function(j) { | ||
as.numeric(temp[[i]]$diff_cent %*% temp[[j]]$diff_cent / ngame) | ||
}) | ||
}) %>% list.rbind %>% { | ||
eigs_sym( | ||
A = (.), | ||
k = D, | ||
which = "LM", | ||
opts = list(retvec = FALSE) | ||
)$values | ||
} %>% | ||
{ | ||
(.) / nsamp | ||
} | ||
MC_hat <- sapply(1:N_MC, function(x) { | ||
crossprod(eigV_hat, rchisq(D, df = 1)) | ||
}) | ||
q_90_hat <- quantile(MC_hat, 0.90) | ||
q_95_hat <- quantile(MC_hat, 0.95) | ||
q_99_hat <- quantile(MC_hat, 0.99) | ||
MC_til <- sapply(1:N_MC, function(x) { | ||
crossprod(eigV_til, rchisq(D, df = 1)) | ||
}) | ||
q_90_til <- quantile(MC_til, 0.90) | ||
q_95_til <- quantile(MC_til, 0.95) | ||
q_99_til <- quantile(MC_til, 0.99) | ||
p_hat <- 1 - ecdf(MC_hat)(Z) | ||
tibble( | ||
type = c("non-center", "center"), | ||
Z = rep(Z, 2), | ||
"pval" = c(p_hat, p_hat), | ||
"90%" = c(q_90_hat, q_90_til), | ||
"95%" = c(q_95_hat, q_95_til), | ||
"99%" = c(q_99_hat, q_99_til)) | ||
``` | ||
|
||
|
||
```{r function wrappers} | ||
to_center <- FALSE | ||
ZZ <- calc_Z(df = df_equ, pA = "phat_A", pB = "phat_B", Y = "Y", nsamp = nsamp, ngame = ngame) | ||
eigg <- calc_eig(df = df_equ, n_eig = D, ngame = ngame, | ||
nsamp = nsamp, grid = "grid", cent = to_center) | ||
oh <- calc_pval(ZZ, eig = eigg, quan = c(0.90, 0.95, 0.99), n_MC = N_MC) | ||
temp <- calc_L_s2(df = df_equ, pA = "phat_A", pB = "phat_B") | ||
plot_pcb(df = temp) | ||
tibble( | ||
type = ifelse(to_center, "center", "non-center"), | ||
Z = ZZ, | ||
pval = oh$p_val, | ||
"90%" = oh$quantile[1], | ||
"95%" = oh$quantile[2], | ||
"99%" = oh$quantile[3] | ||
) | ||
``` | ||
|
Large diffs are not rendered by default.
Oops, something went wrong.