Skip to content

DDQN inplementation on PLE FlappyBird environment in PyTorch.

Notifications You must be signed in to change notification settings

chinancheng/DDQN.pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Double Deep Q Learning (DDQN) In PyTorch

DDQN inplementation on PLE FlappyBird environment in PyTorch.

DDQN is proposed to solve the overestimation issue of Deep Q Learning (DQN). Apply separate target network to choose action, reducing the correlation of action selection and value evaluation.

Requirement

Algorithm

  • In this implementation, I update policy network per episode e not per step t.
  • Simplify input images for faster convergence.

Usage

  • HyperParameter in config.py
  • Train
python main.py --train=True --video_path=./video --logs_path=./logs 
  • Restore Pretrain Model
python main.py --restore=./pretrain/model-98500.pth  
  • Visualize loss and reward curve
python -m visdom.server
python visualize.py --logs_path=./logs

Result

Reference

About

DDQN inplementation on PLE FlappyBird environment in PyTorch.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages