Skip to content

Commit

Permalink
Curve-based animation (bevyengine#15434)
Browse files Browse the repository at this point in the history
# Objective

This PR extends and reworks the material from bevyengine#15282 by allowing
arbitrary curves to be used by the animation system to animate arbitrary
properties. The goals of this work are to:
- Allow far greater flexibility in how animations are allowed to be
defined in order to be used with `bevy_animation`.
- Delegate responsibility over keyframe interpolation to `bevy_math` and
the `Curve` libraries and reduce reliance on keyframes in animation
definitions generally.
- Move away from allowing the glTF spec to completely define animations
on a mechanical level.

## Solution

### Overview

At a high level, curves have been incorporated into the animation system
using the `AnimationCurve` trait (closely related to what was
`Keyframes`). From the top down:

1. In `animate_targets`, animations are driven by `VariableCurve`, which
is now a thin wrapper around a `Box<dyn AnimationCurve>`.
2. `AnimationCurve` is something built out of a `Curve`, and it tells
the animation system how to use the curve's output to actually mutate
component properties. The trait looks like this:
```rust
/// A low-level trait that provides control over how curves are actually applied to entities
/// by the animation system.
///
/// Typically, this will not need to be implemented manually, since it is automatically
/// implemented by [`AnimatableCurve`] and other curves used by the animation system
/// (e.g. those that animate parts of transforms or morph weights). However, this can be
/// implemented manually when `AnimatableCurve` is not sufficiently expressive.
///
/// In many respects, this behaves like a type-erased form of [`Curve`], where the output
/// type of the curve is remembered only in the components that are mutated in the
/// implementation of [`apply`].
///
/// [`apply`]: AnimationCurve::apply
pub trait AnimationCurve: Reflect + Debug + Send + Sync {
    /// Returns a boxed clone of this value.
    fn clone_value(&self) -> Box<dyn AnimationCurve>;

    /// The range of times for which this animation is defined.
    fn domain(&self) -> Interval;

    /// Write the value of sampling this curve at time `t` into `transform` or `entity`,
    /// as appropriate, interpolating between the existing value and the sampled value
    /// using the given `weight`.
    fn apply<'a>(
        &self,
        t: f32,
        transform: Option<Mut<'a, Transform>>,
        entity: EntityMutExcept<'a, (Transform, AnimationPlayer, Handle<AnimationGraph>)>,
        weight: f32,
    ) -> Result<(), AnimationEvaluationError>;
}
```
3. The conversion process from a `Curve` to an `AnimationCurve` involves
using wrappers which communicate the intent to animate a particular
property. For example, here is `TranslationCurve`, which wraps a
`Curve<Vec3>` and uses it to animate `Transform::translation`:
```rust
/// This type allows a curve valued in `Vec3` to become an [`AnimationCurve`] that animates
/// the translation component of a transform.
pub struct TranslationCurve<C>(pub C);
```

### Animatable Properties

The `AnimatableProperty` trait survives in the transition, and it can be
used to allow curves to animate arbitrary component properties. The
updated documentation for `AnimatableProperty` explains this process:
<details>
  <summary>Expand AnimatableProperty example</summary

An `AnimatableProperty` is a value on a component that Bevy can animate.

You can implement this trait on a unit struct in order to support
animating
custom components other than transforms and morph weights. Use that type
in
conjunction with `AnimatableCurve` (and perhaps
`AnimatableKeyframeCurve`
to define the animation itself). For example, in order to animate font
size of a
text section from 24 pt. to 80 pt., you might use:

```rust
#[derive(Reflect)]
struct FontSizeProperty;

impl AnimatableProperty for FontSizeProperty {
    type Component = Text;
    type Property = f32;
    fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> {
        Some(&mut component.sections.get_mut(0)?.style.font_size)
    }
}
```

You can then create an `AnimationClip` to animate this property like so:

```rust
let mut animation_clip = AnimationClip::default();
animation_clip.add_curve_to_target(
    animation_target_id,
    AnimatableKeyframeCurve::new(
        [
            (0.0, 24.0),
            (1.0, 80.0),
        ]
    )
    .map(AnimatableCurve::<FontSizeProperty, _>::from_curve)
    .expect("Failed to create font size curve")
);
```

Here, the use of `AnimatableKeyframeCurve` creates a curve out of the
given keyframe time-value
pairs, using the `Animatable` implementation of `f32` to interpolate
between them. The
invocation of `AnimatableCurve::from_curve` with `FontSizeProperty`
indicates that the `f32`
output from that curve is to be used to animate the font size of a
`Text` component (as
configured above).


</details>

### glTF Loading

glTF animations are now loaded into `Curve` types of various kinds,
depending on what is being animated and what interpolation mode is being
used. Those types get wrapped into and converted into `Box<dyn
AnimationCurve>` and shoved inside of a `VariableCurve` just like
everybody else.

### Morph Weights

There is an `IterableCurve` abstraction which allows sampling these from
a contiguous buffer without allocating. Its only reason for existing is
that Rust disallows you from naming function types, otherwise we would
just use `Curve` with an iterator output type. (The iterator involves
`Map`, and the name of the function type would have to be able to be
named, but it is not.)

A `WeightsCurve` adaptor turns an `IterableCurve` into an
`AnimationCurve`, so it behaves like everything else in that regard.

## Testing

Tested by running existing animation examples. Interpolation logic has
had additional tests added within the `Curve` API to replace the tests
in `bevy_animation`. Some kinds of out-of-bounds errors have become
impossible.

Performance testing on `many_foxes` (`animate_targets`) suggests that
performance is very similar to the existing implementation. Here are a
couple trace histograms across different runs (yellow is this branch,
red is main).
<img width="669" alt="Screenshot 2024-09-27 at 9 41 50 AM"
src="https://github.com/user-attachments/assets/5ba4e9ac-3aea-452e-aaf8-1492acc2d7fc">
<img width="673" alt="Screenshot 2024-09-27 at 9 45 18 AM"
src="https://github.com/user-attachments/assets/8982538b-04cf-46b5-97b2-164c6bc8162e">

---

## Migration Guide

Most user code that does not directly deal with `AnimationClip` and
`VariableCurve` will not need to be changed. On the other hand,
`VariableCurve` has been completely overhauled. If you were previously
defining animation curves in code using keyframes, you will need to
migrate that code to use curve constructors instead. For example, a
rotation animation defined using keyframes and added to an animation
clip like this:
```rust
animation_clip.add_curve_to_target(
    animation_target_id,
    VariableCurve {
        keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0],
        keyframes: Keyframes::Rotation(vec![
            Quat::IDENTITY,
            Quat::from_axis_angle(Vec3::Y, PI / 2.),
            Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
            Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
            Quat::IDENTITY,
        ]),
        interpolation: Interpolation::Linear,
    },
);
```

would now be added like this:
```rust
animation_clip.add_curve_to_target(
    animation_target_id,
    AnimatableKeyframeCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([
        Quat::IDENTITY,
        Quat::from_axis_angle(Vec3::Y, PI / 2.),
        Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
        Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
        Quat::IDENTITY,
    ]))
    .map(RotationCurve)
    .expect("Failed to build rotation curve"),
);
```

Note that the interface of `AnimationClip::add_curve_to_target` has also
changed (as this example shows, if subtly), and now takes its curve
input as an `impl AnimationCurve`. If you need to add a `VariableCurve`
directly, a new method `add_variable_curve_to_target` accommodates that
(and serves as a one-to-one migration in this regard).

### For reviewers

The diff is pretty big, and the structure of some of the changes might
not be super-obvious:
- `keyframes.rs` became `animation_curves.rs`, and `AnimationCurve` is
based heavily on `Keyframes`, with the adaptors also largely following
suite.
- The Curve API adaptor structs were moved from `bevy_math::curve::mod`
into their own module `adaptors`. There are no functional changes to how
these adaptors work; this is just to make room for the specialized
reflection implementations since `mod.rs` was getting kind of cramped.
- The new module `gltf_curves` holds the additional curve constructions
that are needed by the glTF loader. Note that the loader uses a mix of
these and off-the-shelf `bevy_math` curve stuff.
- `animatable.rs` no longer holds logic related to keyframe
interpolation, which is now delegated to the existing abstractions in
`bevy_math::curve::cores`.

---------

Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
Co-authored-by: aecsocket <43144841+aecsocket@users.noreply.github.com>
  • Loading branch information
3 people authored Sep 30, 2024
1 parent f3e8ae0 commit 429987e
Show file tree
Hide file tree
Showing 12 changed files with 2,023 additions and 1,472 deletions.
86 changes: 2 additions & 84 deletions crates/bevy_animation/src/animatable.rs
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
//! Traits and type for interpolating between values.
use crate::{util, AnimationEvaluationError, Interpolation};
use crate::util;
use bevy_color::{Laba, LinearRgba, Oklaba, Srgba, Xyza};
use bevy_math::*;
use bevy_reflect::Reflect;
Expand Down Expand Up @@ -188,93 +188,11 @@ impl Animatable for Quat {
}
}

/// An abstraction over a list of keyframes.
///
/// Using this abstraction instead of `Vec<T>` enables more flexibility in how
/// keyframes are stored. In particular, morph weights use this trait in order
/// to flatten the keyframes for all morph weights into a single vector instead
/// of nesting vectors.
pub(crate) trait GetKeyframe {
/// The type of the property to be animated.
type Output;
/// Retrieves the value of the keyframe at the given index.
fn get_keyframe(&self, index: usize) -> Option<&Self::Output>;
}

/// Interpolates between keyframes and stores the result in `dest`.
///
/// This is factored out so that it can be shared between implementations of
/// [`crate::keyframes::Keyframes`].
pub(crate) fn interpolate_keyframes<T>(
dest: &mut T,
keyframes: &(impl GetKeyframe<Output = T> + ?Sized),
interpolation: Interpolation,
step_start: usize,
time: f32,
weight: f32,
duration: f32,
) -> Result<(), AnimationEvaluationError>
where
T: Animatable + Clone,
{
let value = match interpolation {
Interpolation::Step => {
let Some(start_keyframe) = keyframes.get_keyframe(step_start) else {
return Err(AnimationEvaluationError::KeyframeNotPresent(step_start));
};
(*start_keyframe).clone()
}

Interpolation::Linear => {
let (Some(start_keyframe), Some(end_keyframe)) = (
keyframes.get_keyframe(step_start),
keyframes.get_keyframe(step_start + 1),
) else {
return Err(AnimationEvaluationError::KeyframeNotPresent(step_start + 1));
};

T::interpolate(start_keyframe, end_keyframe, time)
}

Interpolation::CubicSpline => {
let (
Some(start_keyframe),
Some(start_tangent_keyframe),
Some(end_tangent_keyframe),
Some(end_keyframe),
) = (
keyframes.get_keyframe(step_start * 3 + 1),
keyframes.get_keyframe(step_start * 3 + 2),
keyframes.get_keyframe(step_start * 3 + 3),
keyframes.get_keyframe(step_start * 3 + 4),
)
else {
return Err(AnimationEvaluationError::KeyframeNotPresent(
step_start * 3 + 4,
));
};

interpolate_with_cubic_bezier(
start_keyframe,
start_tangent_keyframe,
end_tangent_keyframe,
end_keyframe,
time,
duration,
)
}
};

*dest = T::interpolate(dest, &value, weight);

Ok(())
}

/// Evaluates a cubic Bézier curve at a value `t`, given two endpoints and the
/// derivatives at those endpoints.
///
/// The derivatives are linearly scaled by `duration`.
fn interpolate_with_cubic_bezier<T>(p0: &T, d0: &T, d3: &T, p3: &T, t: f32, duration: f32) -> T
pub fn interpolate_with_cubic_bezier<T>(p0: &T, d0: &T, d3: &T, p3: &T, t: f32, duration: f32) -> T
where
T: Animatable + Clone,
{
Expand Down
Loading

0 comments on commit 429987e

Please sign in to comment.