-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
chris-langfield
committed
May 31, 2024
1 parent
373387a
commit d644327
Showing
1 changed file
with
76 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
import hexagdly | ||
from example_utils import * | ||
import numpy as np | ||
from hexfft.plot import hexshow | ||
from hexfft import HexArray | ||
from hexfft import fft, ifft | ||
from hexfft.utils import filter_shift | ||
|
||
# Tensor parameters: | ||
num_rows = 20 | ||
num_columns = 24 | ||
|
||
def toy_data_hexarray(*args, **kwargs): | ||
x = toy_data(*args, **kwargs) | ||
return HexArray(np.squeeze(np.array(x.to_torch_tensor().T))) | ||
|
||
# Shapes in tensor with position (px, py) | ||
t1 = toy_data_hexarray('double_hex', num_rows, num_columns, px=5, py=5) | ||
t2 = toy_data_hexarray('double_hex', num_rows, num_columns, px=14, py=8) | ||
t3 = toy_data_hexarray('snowflake_3', num_rows, num_columns, px=5, py=16) | ||
t4 = toy_data_hexarray('snowflake_3', num_rows, num_columns, px=14, py=19) | ||
|
||
h = t1 + t2 + t3 + t4 | ||
|
||
hexshow(h, cmap="gray_r") | ||
|
||
kernel = HexArray(np.zeros((num_rows, num_columns))) | ||
c1, c2 = num_rows//2, num_columns//2 | ||
kernel[c1, c2] = 1. | ||
idx = np.array([[c1, c2-1], [c1, c2+1], [c1-1, c2], [c1+1, c2], [c1-1, c2-1], [c1+1, c2-1]]) | ||
kernel[tuple(idx.T)] = 1. | ||
hexshow(kernel, cmap="gray_r") | ||
|
||
H = fft(h) | ||
hexshow(np.abs(h), cmap="gray_r") | ||
|
||
K = fft(filter_shift(kernel)) | ||
hexshow(np.real(K), cmap="gray_r") | ||
|
||
CONV = H * K | ||
hexfft_conv = ifft(CONV) | ||
|
||
|
||
##### --------------------------- | ||
|
||
# Shapes in tensor with position (px, py) | ||
s1 = toy_data('double_hex', num_rows, num_columns, px=5, py=5) | ||
t1 = s1.to_torch_tensor() | ||
s2 = toy_data('double_hex', num_rows, num_columns, px=14, py=8) | ||
t2 = s2.to_torch_tensor() | ||
|
||
s3 = toy_data('snowflake_3', num_rows, num_columns, px=5, py=16) | ||
t3 = s3.to_torch_tensor() | ||
s4 = toy_data('snowflake_3', num_rows, num_columns, px=14, py=19) | ||
t4 = s4.to_torch_tensor() | ||
|
||
tensor = t1 + t2 + t3 + t4 | ||
hex_conv = hexagdly.Conv2d(in_channels = 1, out_channels = 1, kernel_size = 1, stride = 1, bias=False, debug=True) | ||
hex_conved_tensor = hex_conv(tensor) | ||
hg_conv = HexArray(np.squeeze(hex_conved_tensor.detach().numpy().T)) | ||
|
||
fig, ax = plt.subplots(3, 1, figsize=(4, 12)) | ||
im = hexshow(np.real(hexfft_conv), cmap="gray_r", ax=ax[0]) | ||
fig.colorbar(im, ax=ax[0]) | ||
ax[0].set_title("hexfft results") | ||
|
||
im = hexshow(hg_conv, cmap="gray_r", ax=ax[1]) | ||
fig.colorbar(im, ax=ax[1]) | ||
ax[1].set_title("hexagDLy results") | ||
|
||
im = hexshow(np.real(hexfft_conv - hg_conv), cmap="gray_r", ax=ax[2]) | ||
fig.colorbar(im, ax=ax[2]) | ||
ax[2].set_title("Difference") | ||
|
||
fig.tight_layout() | ||
|