Skip to content

Interface to Azure Cosmos DB. Submit issues and PRs at https://github.com/Azure/AzureCosmosR.

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

cloudyr/AzureCosmosR

Repository files navigation

AzureCosmosR

CRAN Downloads R-CMD-check

An interface to Azure Cosmos DB, a NoSQL database service from Microsoft.

Azure Cosmos DB is a fully managed NoSQL database for modern app development. Single-digit millisecond response times, and automatic and instant scalability, guarantee speed at any scale. Business continuity is assured with SLA-backed availability and enterprise-grade security. App development is faster and more productive thanks to turnkey multi region data distribution anywhere in the world, open source APIs and SDKs for popular languages. As a fully managed service, Azure Cosmos DB takes database administration off your hands with automatic management, updates and patching. It also handles capacity management with cost-effective serverless and automatic scaling options that respond to application needs to match capacity with demand.

On the Resource Manager side, AzureCosmosR extends the AzureRMR class framework to allow creating and managing Cosmos DB accounts. On the client side, it provides a comprehensive interface to the Cosmos DB SQL/core API as well as bridges to the MongoDB and table storage APIs.

The primary repo for this package is at https://github.com/Azure/AzureCosmosR; please submit issues and PRs there. It is also mirrored at the Cloudyr org at https://github.com/cloudyr/AzureCosmosR. You can install the development version of the package with devtools::install_github("Azure/AzureCosmosR").

SQL interface

AzureCosmosR provides a suite of methods to work with databases, containers (tables) and documents (rows) using the SQL API.

library(dplyr)
library(AzureCosmosR)

endp <- cosmos_endpoint("https://myaccount.documents.azure.com:443/", key="mykey")

list_cosmos_databases(endp)

db <- get_cosmos_database(endp, "mydatabase")

# create a new container and upload the Star Wars dataset from dplyr
cont <- create_cosmos_container(db, "mycontainer", partition_key="sex")
bulk_import(cont, starwars)

query_documents(cont, "select * from mycontainer")

# an array select: all characters who appear in ANH
query_documents(cont,
    "select c.name
        from mycontainer c
        where array_contains(c.films, 'A New Hope')")

You can easily create and execute stored procedures and user-defined functions:

proc <- create_stored_procedure(
    cont,
    "helloworld",
    'function () {
        var context = getContext();
        var response = context.getResponse();
        response.setBody("Hello, World");
    }'
)

exec_stored_procedure(proc)

create_udf(cont, "times2", "function(x) { return 2*x; }")

query_documents(cont, "select udf.times2(c.height) from cont c")

Aggregates take some extra work, as the Cosmos DB REST API only has limited support for cross-partition queries. Set by_pkrange=TRUE in the query_documents call, which will run the query on each partition key range (pkrange) and return a list of data frames. You can then process the list to obtain an overall result.

# average height by sex, by pkrange
df_lst <- query_documents(
    cont,
    "select c.gender, count(1) n, avg(c.height) height
        from mycontainer c
        group by c.gender",
    by_pkrange=TRUE
)

# combine pkrange results
df_lst %>%
    bind_rows(.id="pkrange") %>%
    group_by(gender) %>%
    summarise(height=weighted.mean(height, n))

Other client interfaces

MongoDB

You can query data in a MongoDB-enabled Cosmos DB instance using the mongolite package. AzureCosmosR provides a simple bridge to facilitate this.

endp <- cosmos_mongo_endpoint("https://myaccount.mongo.cosmos.azure.com:443/", key="mykey")

# a mongolite::mongo object
conn <- cosmos_mongo_connection(endp, "mycollection", "mydatabase")
conn$find("{}")

For more information on working with MongoDB, see the mongolite documentation.

Table storage

You can work with data in a table storage-enabled Cosmos DB instance using the AzureTableStor package.

endp <- AzureTableStor::table_endpoint("https://myaccount.table.cosmos.azure.com:443/", key="mykey")

tab <- AzureTableStor::storage_table(endp, "mytable")
AzureTableStor::list_table_entities(tab, filter="firstname eq 'Satya'")

Azure Resource Manager interface

On the ARM side, AzureCosmosR extends the AzureRMR class framework with a new az_cosmosdb class representing a Cosmos DB account resource, and methods for the az_resource_group resource group class.

rg <- AzureRMR::get_azure_login()$
    get_subscription("sub_id")$
    get_resource_group("rgname")

rg$create_cosmosdb_account("mycosmosdb", interface="sql", free_tier=TRUE)
rg$list_cosmosdb_accounts()
cosmos <- rg$get_cosmosdb_account("mycosmosdb")

# access keys (passwords) for this account
cosmos$list_keys()

# get an endpoint object -- detects which API this account uses
endp <- cosmos$get_endpoint()

# API-specific endpoints
cosmos$get_sql_endpoint()
cosmos$get_mongo_endpoint()
cosmos$get_table_endpoint()

About

Interface to Azure Cosmos DB. Submit issues and PRs at https://github.com/Azure/AzureCosmosR.

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •