This repository contains code for the paper SNIP: Single-shot Network Pruning based on Connection Sensitivity (ICLR 2019).
Update: This repository is improved version of original SNIP code. This report shows how we improve the SNIP.
- tensorflow == 2 (TODO: adjust code to use pure tf2 function)
- python 2.7 or python 3.6
- packages in
requirements.txt
Put the following datasets in your preferred location (e.g., ./data
).
To run the code (LeNet on MNIST by default):
python main.py --path_data=./data
For example, in order to reproduce results for VGG-D:
python main.py --logdir ./reproduce-vgg --path_data ./data --datasource cifar-10 --aug_kinds fliplr translate_px --arch vgg-d --target_sparsity 0.95 --batch_size 128 --train_iterations 150000 --optimizer momentum --lr_decay_type piecewise --decay_boundaries 30000 60000 90000 120000 --decay_values 0.1 0.02 0.004 0.0008 0.00016
See main.py
to run with other options.
If you use this code for your work, please cite the following:
@inproceedings{lee2018snip,
title={SNIP: Single-shot network pruning based on connection sensitivity},
author={Lee, Namhoon and Ajanthan, Thalaiyasingam and Torr, Philip HS},
booktitle={ICLR},
year={2019},
}
This project is licensed under the MIT License. See the LICENSE file for details.