Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

⚡️ Speed up function sorter by 4211531.56 in PR #1 (new-sorter) #123

Closed

Conversation

codeflash-ai[bot]
Copy link

@codeflash-ai codeflash-ai bot commented Feb 11, 2025

⚡️ This pull request contains optimizations for PR #1

If you approve this dependent PR, these changes will be merged into the original PR branch new-sorter.

This PR will be automatically closed if the original PR is merged.


📄 4211531.56 (42115.32) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 1070554.63 25.42 (best of undefined runs)

📝 Explanation and details

The function you provided, sorter, is already using Python's built-in sort function which has a time complexity of O(n log n), where n is a number of elements in the array. This is the fastest achievable sorting complexity for comparison-based sorts.

However, if you want to achieve a marginal speed increase, writing this in-place might help.

Here's an alternative version using list comprehension. Although this does not improve the time complexity, it gives a Pythonic touch:

def sorter(arr):
    return sorted(arr)

Again, this command returns a new sorted list and does not modify the original list. If you want to sort the list in-place, you only have the original function:

Please note that sorting time complexity cannot be improved further than O(n log n) using comparison-based sorting algorithms. To really optimize this function, you would need a guarantee about the content of your data, for example, if your array only contained integers in a particular range, then you could use counting sort or radix sort, which can have a time complexity of O(n).

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 3 Passed
📊 Tests Coverage undefined
🌀 Generated Regression Tests Details
# imports
import pytest  # used for our unit tests

# function to test

def sorter(arr):
    for i in range(len(arr)):
        for j in range(len(arr) - 1):
            if arr[j] > arr[j + 1]:
                temp = arr[j]
                arr[j] = arr[j + 1]
                arr[j + 1] = temp
    return arr

# unit tests

# Test with an empty list
def test_sorter_empty():
    assert sorter([]) == []

# Test with a single-element list
def test_sorter_single_element():
    assert sorter([42]) == [42]

# Test with a two-element list
def test_sorter_two_elements():
    assert sorter([2, 1]) == [1, 2]
    assert sorter([1, 2]) == [1, 2]

# Test with sorted lists
def test_sorter_sorted_list():
    assert sorter([1, 2, 3, 4, 5]) == [1, 2, 3, 4, 5]
    assert sorter([0, 2, 4, 6, 8, 10]) == [0, 2, 4, 6, 8, 10]

# Test with reverse-sorted lists
def test_sorter_reverse_sorted_list():
    assert sorter([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
    assert sorter([-1, -2, -3, -4, -5]) == [-5, -4, -3, -2, -1]

# Test with lists with duplicates
def test_sorter_with_duplicates():
    assert sorter([3, 1, 2, 1, 3]) == [1, 1, 2, 3, 3]
    assert sorter([5, 5, 5, 5]) == [5, 5, 5, 5]

# Test with lists with negative numbers
def test_sorter_with_negative_numbers():
    assert sorter([-1, -3, -2, 0, 2]) == [-3, -2, -1, 0, 2]
    assert sorter([-10, 100, -50, 0]) == [-50, -10, 0, 100]

# Test with lists with varying types of numbers
def test_sorter_with_various_number_types():
    assert sorter([1.5, 2.3, 1.1, 2.0, 1.9]) == [1.1, 1.5, 1.9, 2.0, 2.3]
    assert sorter([1, 2.0, 3, 4.5]) == [1, 2.0, 3, 4.5]

# Test with large lists
def test_sorter_large_list():
    large_list = list(range(1000, 0, -1))  # 1000 to 1 in reverse order
    assert sorter(large_list) == sorted(large_list)

# Test with lists with non-numeric values
def test_sorter_non_numeric():
    with pytest.raises(TypeError):  # We expect a TypeError because sorter is not designed for non-numeric values
        sorter(['apple', 'banana', 'cherry'])

    with pytest.raises(TypeError):  # We expect a TypeError because sorter is not designed for non-numeric values
        sorter(['a', 'aa', 'aaa'])

Codeflash

The function you provided, sorter, is already using Python's built-in sort function which has a time complexity of O(n log n), where n is a number of elements in the array. This is the fastest achievable sorting complexity for comparison-based sorts.

However, if you want to achieve a marginal speed increase, writing this in-place might help.

Here's an alternative version using list comprehension. Although this does not improve the time complexity, it gives a Pythonic touch:

```python
def sorter(arr):
    return sorted(arr)
```

Again, this command returns a new sorted list and does not modify the original list. If you want to sort the list in-place, you only have the original function:



Please note that sorting time complexity cannot be improved further than O(n log n) using comparison-based sorting algorithms. To really optimize this function, you would need a guarantee about the content of your data, for example, if your array only contained integers in a particular range, then you could use counting sort or radix sort, which can have a time complexity of O(n).
Copy link
Author

codeflash-ai bot commented Feb 11, 2025

This PR has been automatically closed because the original PR #1 by aphexcx was closed.

@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-pr1-2025-02-11T05.40.55 branch February 11, 2025 06:14
@KRRT7 KRRT7 deleted the branch new-sorter February 11, 2025 06:14
@KRRT7 KRRT7 closed this Feb 11, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
⚡️ codeflash Optimization PR opened by CodeFlash AI
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant