Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

⚡️ Speed up function sorter3 by 4,514,668% #158

Open
wants to merge 1 commit into
base: main
Choose a base branch
from

Conversation

codeflash-ai-dev[bot]
Copy link

📄 4,514,668% (45,146.68x) speedup for sorter3 in bubble_sort.py

⏱️ Runtime : 4.75 seconds 105 microseconds (best of 746 runs)

📝 Explanation and details

The provided code is an implementation of the Bubble Sort algorithm, which is known for its simplicity but also for its inefficiency with a time complexity of O(n^2). We can significantly improve the performance by using a more efficient sorting algorithm such as Timsort, which is Python’s built-in sorting algorithm implemented in the sorted method and list.sort() method.

Here is the optimized version of your program using Python's built-in sort method.

The sorted function in Python uses Timsort, which has a time complexity of O(n log n). It is highly optimized and generally performs better than Bubble Sort for most scenarios.

If you want to use an in-place sort to ensure the input list itself is modified, you can use the sort method.

This will achieve the same result more efficiently.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 67 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
import pytest  # used for our unit tests
from bubble_sort import sorter3

# unit tests

# Basic Test Cases
def test_empty_list():
    codeflash_output = sorter3([])

def test_single_element_list():
    codeflash_output = sorter3([1])
    codeflash_output = sorter3(['a'])

def test_already_sorted_list():
    codeflash_output = sorter3([1, 2, 3, 4, 5])
    codeflash_output = sorter3(['a', 'b', 'c', 'd'])

def test_reverse_sorted_list():
    codeflash_output = sorter3([5, 4, 3, 2, 1])
    codeflash_output = sorter3(['d', 'c', 'b', 'a'])

def test_list_with_duplicates():
    codeflash_output = sorter3([3, 1, 2, 3, 1])
    codeflash_output = sorter3(['b', 'a', 'b', 'a'])

def test_list_with_negative_numbers():
    codeflash_output = sorter3([3, -1, 2, -3, 1])
    codeflash_output = sorter3([-5, -10, 0, 5, 10])

def test_list_with_mixed_positive_and_negative_numbers():
    codeflash_output = sorter3([3, -1, 2, 0, -3, 1])

def test_list_with_floating_point_numbers():
    codeflash_output = sorter3([3.1, 2.2, 5.5, 1.1])
    codeflash_output = sorter3([1.5, -2.3, 3.7, 0.0])

def test_list_with_strings_of_different_lengths():
    codeflash_output = sorter3(['apple', 'banana', 'cherry', 'date'])
    codeflash_output = sorter3(['dog', 'cat', 'elephant', 'bee'])

# Large Scale Test Cases
def test_large_list():
    codeflash_output = sorter3([i for i in range(1000, 0, -1)])
    codeflash_output = sorter3([i for i in range(10000, 9000, -1)])

def test_list_with_repeated_elements():
    codeflash_output = sorter3([5, 5, 5, 5, 5])
    codeflash_output = sorter3([2, 3, 2, 3, 2, 3])

def test_list_with_special_characters():
    codeflash_output = sorter3(['!', '@', '#', '])
    codeflash_output = sorter3(['z', '!', 'a', '@'])

# Edge Test Cases

def test_list_with_inf_values():
    codeflash_output = sorter3([3, float('inf'), 2, float('-inf'), 1])
    codeflash_output = sorter3([float('inf'), float('-inf'), float('inf'), float('-inf')])

def test_list_with_mixed_numeric_types():
    codeflash_output = sorter3([3, 2.2, 5, 1.1])
    codeflash_output = sorter3([1, 2.5, 3, 4.0])

def test_list_with_boolean_and_numeric_values():
    codeflash_output = sorter3([True, False, 1, 0])
    codeflash_output = sorter3([1, True, 0, False])

def test_list_with_large_numbers():
    codeflash_output = sorter3([1e10, 1e5, 1e15, 1e3])
    codeflash_output = sorter3([1e-10, 1e-5, 1e-15, 1e-3])

def test_list_with_complex_numbers():
    with pytest.raises(TypeError):
        sorter3([(1+2j), (3+4j), (2+3j)])
    with pytest.raises(TypeError):
        sorter3([(1+1j), (1+0j), (0+1j)])

def test_list_with_mixed_data_types_including_none():
    with pytest.raises(TypeError):
        sorter3([3, None, 'a', 2])
    with pytest.raises(TypeError):
        sorter3([None, 1, 2, None])

def test_list_with_custom_objects():
    class CustomObject:
        def __init__(self, value):
            self.value = value
        def __lt__(self, other):
            return self.value < other.value

    codeflash_output = sorter3([CustomObject(3), CustomObject(1), CustomObject(2)])

    class NonComparableObject:
        def __init__(self, value):
            self.value = value

    with pytest.raises(TypeError):
        sorter3([NonComparableObject(3), NonComparableObject(1), NonComparableObject(2)])



def test_list_with_immutable_and_mutable_elements():
    with pytest.raises(TypeError):
        sorter3([1, [2, 3], 4])
    with pytest.raises(TypeError):
        sorter3(['a', {'key': 'value'}, 'b'])



import pytest  # used for our unit tests
from bubble_sort import sorter3

# unit tests

def test_basic_functionality():
    # Simple Unsorted List
    codeflash_output = sorter3([3, 1, 2])
    codeflash_output = sorter3([5, 3, 8, 4, 2])
    
    # Already Sorted List
    codeflash_output = sorter3([1, 2, 3])
    codeflash_output = sorter3([2, 4, 6, 8])
    
    # Reverse Sorted List
    codeflash_output = sorter3([3, 2, 1])
    codeflash_output = sorter3([9, 7, 5, 3, 1])

def test_edge_cases():
    # Empty List
    codeflash_output = sorter3([])
    
    # Single Element List
    codeflash_output = sorter3([1])
    codeflash_output = sorter3([99])
    
    # Two Elements List
    codeflash_output = sorter3([2, 1])
    codeflash_output = sorter3([1, 2])

def test_duplicates():
    # Duplicates Present
    codeflash_output = sorter3([3, 1, 2, 2, 3])
    codeflash_output = sorter3([5, 3, 3, 5, 1])

def test_negative_numbers():
    # Negative and Positive Numbers
    codeflash_output = sorter3([-1, -3, 2, 1])
    codeflash_output = sorter3([0, -1, 3, -2])
    
    # All Negative Numbers
    codeflash_output = sorter3([-3, -1, -2])
    codeflash_output = sorter3([-5, -4, -3, -2, -1])

def test_floats():
    # Mixed Integers and Floats
    codeflash_output = sorter3([1.1, 2.2, 0.5])
    codeflash_output = sorter3([3.3, 1.1, 2.2, 3.3])

def test_large_lists():
    import random
    random.seed(0)  # for reproducibility
    
    # Large List for Performance Testing
    large_list = random.sample(range(1000), 1000)
    codeflash_output = sorter3(large_list)
    
    large_desc_list = list(range(1000, 0, -1))
    codeflash_output = sorter3(large_desc_list)

def test_strings():
    # Alphabetical Order
    codeflash_output = sorter3(['banana', 'apple', 'cherry'])
    codeflash_output = sorter3(['dog', 'cat', 'bird'])

def test_mixed_data_types():
    # Mixed Data Types (should raise TypeError)
    with pytest.raises(TypeError):
        sorter3([1, 'two', 3])

def test_stability():
    # Stability of Sorting
    codeflash_output = sorter3([(2, 'a'), (1, 'b'), (2, 'c')])

def test_identical_elements():
    # All Elements Identical
    codeflash_output = sorter3([1, 1, 1])
    codeflash_output = sorter3([5, 5, 5, 5])

# Run the tests
if __name__ == "__main__":
    pytest.main()
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter3-m7e0p2fy and push.

Codeflash

The provided code is an implementation of the Bubble Sort algorithm, which is known for its simplicity but also for its inefficiency with a time complexity of O(n^2). We can significantly improve the performance by using a more efficient sorting algorithm such as Timsort, which is Python’s built-in sorting algorithm implemented in the `sorted` method and `list.sort()` method.

Here is the optimized version of your program using Python's built-in sort method.



The `sorted` function in Python uses Timsort, which has a time complexity of O(n log n). It is highly optimized and generally performs better than Bubble Sort for most scenarios.

If you want to use an in-place sort to ensure the input list itself is modified, you can use the `sort` method.



This will achieve the same result more efficiently.
@codeflash-ai-dev codeflash-ai-dev bot added the ⚡️ codeflash Optimization PR opened by CodeFlash AI label Feb 21, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
⚡️ codeflash Optimization PR opened by CodeFlash AI
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants