Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

⚡️ Speed up method Representation.__repr_str__ by 5% #45

Open
wants to merge 1 commit into
base: main
Choose a base branch
from

Conversation

codeflash-ai[bot]
Copy link

@codeflash-ai codeflash-ai bot commented Jan 24, 2025

📄 5% (0.05x) speedup for Representation.__repr_str__ in pydantic/_internal/_repr.py

⏱️ Runtime : 327 microseconds 311 microseconds (best of 142 runs)

📝 Explanation and details

The goal is to optimize the __repr_args__ and __repr_str__ methods of the Representation class for better runtime performance.

Here are some ways we can optimize this.

  1. Avoid converting and filtering iterables multiple times.
  2. Use list comprehensions and generator expressions efficiently.

Changes Made.

  1. Combined attribute extraction and filtering into a single list comprehension in __repr_args__ to avoid an extra iteration.
  2. Replaced the generator expression in __repr_str__ with a list and joined it once at the end for improved performance.

This ensures that the methods are more efficient and should represent a slight performance improvement, especially for objects with a larger number of attributes.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 15 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 1 Passed
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
import typing
from typing import Any

# imports
import pytest  # used for our unit tests
from pydantic._internal._repr import Representation

# unit tests

# Basic Functionality

def test_single_attribute():
    class SingleAttr(Representation):
        __slots__ = ('attr',)
        def __init__(self, attr):
            self.attr = attr

    obj = SingleAttr('value')
    codeflash_output = obj.__repr_str__(' ')

def test_multiple_attributes():
    class MultiAttr(Representation):
        __slots__ = ('attr1', 'attr2', 'attr3',)
        def __init__(self, attr1, attr2, attr3):
            self.attr1 = attr1
            self.attr2 = attr2
            self.attr3 = attr3

    obj = MultiAttr('value1', 'value2', 'value3')
    codeflash_output = obj.__repr_str__(' ')

# Edge Cases

def test_no_attributes():
    class NoAttr(Representation):
        __slots__ = ()
    
    obj = NoAttr()
    codeflash_output = obj.__repr_str__(' ')

def test_attributes_with_none_values():
    class SomeNoneAttr(Representation):
        __slots__ = ('attr1', 'attr2',)
        def __init__(self, attr1, attr2):
            self.attr1 = attr1
            self.attr2 = attr2

    obj = SomeNoneAttr('value1', None)
    codeflash_output = obj.__repr_str__(' ')

def test_empty_string_attribute():
    class EmptyStringAttr(Representation):
        __slots__ = ('attr',)
        def __init__(self, attr):
            self.attr = attr

    obj = EmptyStringAttr('')
    codeflash_output = obj.__repr_str__(' ')

# Special Characters and Types

def test_attributes_with_special_characters():
    class SpecialCharAttr(Representation):
        __slots__ = ('attr',)
        def __init__(self, attr):
            self.attr = attr

    obj = SpecialCharAttr('special!@#$%^&*()')
    codeflash_output = obj.__repr_str__(' ')

def test_attributes_with_different_data_types():
    class MixedTypeAttr(Representation):
        __slots__ = ('int_attr', 'list_attr', 'dict_attr',)
        def __init__(self, int_attr, list_attr, dict_attr):
            self.int_attr = int_attr
            self.list_attr = list_attr
            self.dict_attr = dict_attr

    obj = MixedTypeAttr(42, [1, 2, 3], {'key': 'value'})
    codeflash_output = obj.__repr_str__(' ')

# Inheritance and Overrides

def test_inherited_class():
    class SuperClassAttr(Representation):
        __slots__ = ('super_attr',)
        def __init__(self, super_attr):
            self.super_attr = super_attr

    class SubClassAttr(SuperClassAttr):
        __slots__ = ('sub_attr',)
        def __init__(self, super_attr, sub_attr):
            super().__init__(super_attr)
            self.sub_attr = sub_attr

    obj = SubClassAttr('super_value', 'sub_value')
    codeflash_output = obj.__repr_str__(' ')

def test_overridden_repr_args():
    class OverrideReprArgs(Representation):
        __slots__ = ('attr',)
        def __init__(self, attr):
            self.attr = attr
        def __repr_args__(self):
            return [('custom_attr', self.attr)]

    obj = OverrideReprArgs('value')
    codeflash_output = obj.__repr_str__(' ')

# Large Scale Test Cases

def test_large_number_of_attributes():
    class LargeAttr(Representation):
        __slots__ = tuple(f'attr{i}' for i in range(1000))
        def __init__(self, values):
            for i, value in enumerate(values):
                setattr(self, f'attr{i}', value)

    values = [f'value{i}' for i in range(1000)]
    obj = LargeAttr(values)
    expected_output = ' '.join(f"attr{i}='value{i}'" for i in range(1000))
    codeflash_output = obj.__repr_str__(' ')

# Performance and Scalability

def test_performance_with_large_data_samples():
    class LargeDataAttr(Representation):
        __slots__ = ('large_list', 'large_dict',)
        def __init__(self, large_list, large_dict):
            self.large_list = large_list
            self.large_dict = large_dict

    large_list = list(range(1000))
    large_dict = {f'key{i}': f'value{i}' for i in range(1000)}
    obj = LargeDataAttr(large_list, large_dict)
    codeflash_output = obj.__repr_str__(' ')

# Deterministic Outputs

def test_consistent_formatting():
    class ConsistentAttr(Representation):
        __slots__ = ('attr',)
        def __init__(self, attr):
            self.attr = attr

    obj = ConsistentAttr('value')
    codeflash_output = obj.__repr_str__(' ')
    codeflash_output = obj.__repr_str__(' ')  # Check consistency

# Readability and Maintainability

def test_descriptive_attribute_names():
    class DescriptiveAttr(Representation):
        __slots__ = ('descriptive_name', 'another_name',)
        def __init__(self, descriptive_name, another_name):
            self.descriptive_name = descriptive_name
            self.another_name = another_name

    obj = DescriptiveAttr('value1', 'value2')
    codeflash_output = obj.__repr_str__(' ')

# Mocking and Side Effects



import typing
from typing import Any

# imports
import pytest  # used for our unit tests
from pydantic._internal._repr import Representation


# unit tests
class Simple(Representation):
    __slots__ = ('a', 'b')

class Mixed(Representation):
    __slots__ = ('a', 'b', 'c')

class Empty(Representation):
    pass

class WithNone(Representation):
    __slots__ = ('a', 'b')
    def __init__(self):
        self.a = None
        self.b = 'value'

class EmptyString(Representation):
    __slots__ = ('a', 'b')
    def __init__(self):
        self.a = ''
        self.b = 'value'

class SpecialChars(Representation):
    __slots__ = ('a', 'b')
    def __init__(self):
        self.a = 'newline\n'
        self.b = 'tab\t'

class Nested(Representation):
    __slots__ = ('a', 'b')
    def __init__(self):
        self.a = Simple()
        self.b = 'value'

class LargeCollection(Representation):
    __slots__ = ('a', 'b')
    def __init__(self):
        self.a = list(range(1000))
        self.b = 'value'

class Child(Simple):
    __slots__ = ('c',)

class CustomRepr(Representation):
    __slots__ = ('a', 'b')
    def __repr_args__(self):
        return [('custom', 'value')]

class ManyAttrs(Representation):
    __slots__ = tuple(f'attr{i}' for i in range(1000))

class DeepNested(Representation):
    __slots__ = ('a',)
    def __init__(self):
        self.a = Nested()

class DevtoolsCompatible(Representation):
    __slots__ = ('a', 'b')

class RichCompatible(Representation):
    __slots__ = ('a', 'b')

class MethodNameAttrs(Representation):
    __slots__ = ('__repr__', '__str__')
    def __init__(self):
        self.__repr__ = 'repr_value'
        self.__str__ = 'str_value'

class UnicodeAttrs(Representation):
    __slots__ = ('a', 'b')
    def __init__(self):
        self.a = 'üñîçødë'
        self.b = 'value'

class OrderedAttrs(Representation):
    __slots__ = ('a', 'b', 'c')
    def __init__(self):
        self.a = 'first'
        self.b = 'second'
        self.c = 'third'

@pytest.mark.parametrize("cls, expected", [
    (Simple, "Simple(a=None, b=None)"),
    (Mixed, "Mixed(a=None, b=None, c=None)"),
    (Empty, "Empty()"),
    (WithNone, "WithNone(b='value')"),
    (EmptyString, "EmptyString(a='', b='value')"),
    (SpecialChars, "SpecialChars(a='newline\\n', b='tab\\t')"),
    (Nested, "Nested(a=Simple(a=None, b=None), b='value')"),
    (LargeCollection, f"LargeCollection(a={list(range(1000))}, b='value')"),
    (Child, "Child(a=None, b=None, c=None)"),
    (CustomRepr, "CustomRepr(custom='value')"),
    (ManyAttrs, f"ManyAttrs({', '.join(f'attr{i}=None' for i in range(1000))})"),
    (DeepNested, "DeepNested(a=Nested(a=Simple(a=None, b=None), b='value'))"),
    (DevtoolsCompatible, "DevtoolsCompatible(a=None, b=None)"),
    (RichCompatible, "RichCompatible(a=None, b=None)"),
    (MethodNameAttrs, "MethodNameAttrs(__repr__='repr_value', __str__='str_value')"),
    (UnicodeAttrs, "UnicodeAttrs(a='üñîçødë', b='value')"),
    (OrderedAttrs, "OrderedAttrs(a='first', b='second', c='third')")
])
def test_repr_str(cls, expected):
    # Instantiate the class
    instance = cls()
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

from pydantic._internal._repr import Representation

def test_Representation___repr_str__():
    assert Representation.__repr_str__(Representation(), '') == ''

📢 Feedback on this optimization? Discord

The goal is to optimize the `__repr_args__` and `__repr_str__` methods of the `Representation` class for better runtime performance.

Here are some ways we can optimize this.
1. Avoid converting and filtering iterables multiple times.
2. Use list comprehensions and generator expressions efficiently.



### Changes Made.
1. Combined attribute extraction and filtering into a single list comprehension in `__repr_args__` to avoid an extra iteration.
2. Replaced the generator expression in `__repr_str__` with a list and joined it once at the end for improved performance.

This ensures that the methods are more efficient and should represent a slight performance improvement, especially for objects with a larger number of attributes.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jan 24, 2025
@codeflash-ai codeflash-ai bot requested a review from misrasaurabh1 January 24, 2025 06:51
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
⚡️ codeflash Optimization PR opened by Codeflash AI relnotes-fix
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants