Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

⚡️ Speed up method Representation.__str__ by 30% #46

Open
wants to merge 1 commit into
base: main
Choose a base branch
from

Conversation

codeflash-ai[bot]
Copy link

@codeflash-ai codeflash-ai bot commented Jan 24, 2025

📄 30% (0.30x) speedup for Representation.__str__ in pydantic/_internal/_repr.py

⏱️ Runtime : 1.46 microsecond 1.12 microsecond (best of 443 runs)

📝 Explanation and details

To enhance the performance of the provided Representation class, we aim to optimize the comprehension and concatenation in the __repr_str__ method, as well as ensuring efficient attribute access. Here's the rewritten version.

Explanation of changes.

  1. Local Variable for args: By introducing a local variable args in __repr_str__, we avoid multiple function calls to self.__repr_args__(), improving readability and potentially performance.
  2. List Accumulation for Joining: We build the list parts using a loop instead of a generator expression to avoid the overhead of multiple function calls.
  3. Conditional Attribute Representation: Inside the loop, we check whether the attribute's name a is None and append the appropriate representation to the parts list. This is more efficient than inline conditions within the join operation.
  4. Early Return for Empty Arguments: This avoids unnecessary computation and returns early if there are no arguments to represent.

The above rewrite should be more efficient due to reduced redundant computations and function calls, while ensuring the same functionality and outputs as the original program.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 27 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 1 Passed
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
import typing
from typing import Any

# imports
import pytest  # used for our unit tests
from pydantic._internal._repr import Representation

# unit tests

# Basic Functionality
def test_single_attribute():
    class TestClass(Representation):
        def __init__(self, foo):
            self.foo = foo

    obj = TestClass(foo=1)

def test_multiple_attributes():
    class TestClass(Representation):
        def __init__(self, foo, bar):
            self.foo = foo
            self.bar = bar

    obj = TestClass(foo=1, bar='test')

# Edge Cases
def test_no_attributes():
    class TestClass(Representation):
        pass

    obj = TestClass()

def test_attributes_with_none_values():
    class TestClass(Representation):
        def __init__(self, foo, bar):
            self.foo = foo
            self.bar = bar

    obj = TestClass(foo=1, bar=None)

def test_empty_strings_and_zero_values():
    class TestClass(Representation):
        def __init__(self, foo, bar):
            self.foo = foo
            self.bar = bar

    obj = TestClass(foo='', bar=0)

# Complex Data Types
def test_list_and_dict_attributes():
    class TestClass(Representation):
        def __init__(self, foo, bar):
            self.foo = foo
            self.bar = bar

    obj = TestClass(foo=[1, 2, 3], bar={'key': 'value'})

def test_nested_objects():
    class NestedClass(Representation):
        def __init__(self, baz):
            self.baz = baz

    class TestClass(Representation):
        def __init__(self, foo, bar):
            self.foo = foo
            self.bar = bar

    nested_obj = NestedClass(baz=5)
    obj = TestClass(foo=nested_obj, bar='test')

# Special Characters
def test_attributes_with_special_characters():
    class TestClass(Representation):
        def __init__(self, foo, bar):
            self.foo = foo
            self.bar = bar

    obj = TestClass(foo='!@#, bar='test')

# Large Scale Test Cases
def test_large_number_of_attributes():
    class TestClass(Representation):
        def __init__(self, **kwargs):
            for key, value in kwargs.items():
                setattr(self, key, value)

    attrs = {f'attr{i}': i for i in range(1000)}
    obj = TestClass(**attrs)
    expected_str = ' '.join([f'attr{i}={i}' for i in range(1000)])

def test_large_attribute_values():
    class TestClass(Representation):
        def __init__(self, foo):
            self.foo = foo

    large_list = list(range(1000))
    obj = TestClass(foo=large_list)

# Inheritance and Overriding
def test_subclass_instances():
    class BaseClass(Representation):
        def __init__(self, foo):
            self.foo = foo

    class SubClass(BaseClass):
        def __init__(self, foo, bar):
            super().__init__(foo)
            self.bar = bar

    obj = SubClass(foo=1, bar='test')

# Special Methods Interaction
def test_interaction_with_repr():
    class TestClass(Representation):
        def __init__(self, foo, bar):
            self.foo = foo
            self.bar = bar

    obj = TestClass(foo=1, bar='test')

# Performance and Scalability
def test_performance_with_large_data():
    import time

    class TestClass(Representation):
        def __init__(self, foo):
            self.foo = foo

    large_list = list(range(1000))
    obj = TestClass(foo=large_list)
    
    start_time = time.time()
    str(obj)
    end_time = time.time()

# Error Handling
def test_invalid_attribute_types():
    class TestClass(Representation):
        def __init__(self, foo):
            self.foo = foo

    obj = TestClass(foo=lambda x: x)

# Custom Implementations
def test_custom_repr_args():
    class TestClass(Representation):
        def __init__(self, foo, bar):
            self.foo = foo
            self.bar = bar

        def __repr_args__(self):
            return [('custom_foo', self.foo), ('custom_bar', self.bar)]

    obj = TestClass(foo=1, bar='test')
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import typing
from typing import Any

# imports
import pytest  # used for our unit tests
from pydantic._internal._repr import Representation

# unit tests

# Basic Functionality Tests
def test_default_behavior():
    class Empty(Representation):
        pass

    empty_instance = Empty()

def test_simple_attributes():
    class SimpleAttributes(Representation):
        def __init__(self):
            self.name = "Test"
            self.age = 30

    instance = SimpleAttributes()

# Edge Case Tests
def test_empty_attributes():
    class EmptyAttributes(Representation):
        def __init__(self):
            self.empty_str = ""
            self.empty_list = []
            self.empty_dict = {}
            self.none_value = None

    instance = EmptyAttributes()

def test_special_characters():
    class SpecialCharacters(Representation):
        def __init__(self):
            self.newline = "Line1\nLine2"
            self.tab = "Column1\tColumn2"
            self.unicode = "Unicode: \u2713"

    instance = SpecialCharacters()

def test_many_attributes():
    class ManyAttributes(Representation):
        def __init__(self):
            for i in range(1000):
                setattr(self, f'attr_{i}', i)

    instance = ManyAttributes()

def test_nested_attributes():
    class SimpleAttributes(Representation):
        def __init__(self):
            self.name = "Test"
            self.age = 30

    class NestedAttributes(Representation):
        def __init__(self):
            self.inner = SimpleAttributes()

    instance = NestedAttributes()

# Inheritance and Overriding Tests
def test_inherited_class():
    class SubRepresentation(Representation):
        def __init__(self):
            self.extra = "extra_value"

    instance = SubRepresentation()

def test_overriding_methods():
    class CustomRepresentation(Representation):
        def __repr_args__(self):
            return [("custom", "value")]

        def __repr_name__(self):
            return "CustomName"

    instance = CustomRepresentation()

# Pretty and Rich Printing Tests
def test_pretty_printing():
    class SimpleAttributes(Representation):
        def __init__(self):
            self.name = "Test"
            self.age = 30

    instance = SimpleAttributes()
    pretty_output = list(instance.__pretty__(lambda x: repr(x)))

def test_rich_printing():
    class SimpleAttributes(Representation):
        def __init__(self):
            self.name = "Test"
            self.age = 30

    instance = SimpleAttributes()
    rich_output = list(instance.__rich_repr__())

# Performance and Scalability Tests
def test_large_scale():
    class ManyAttributes(Representation):
        def __init__(self):
            for i in range(1000):
                setattr(self, f'attr_{i}', i)

    instance = ManyAttributes()
    str_output = str(instance)
    repr_output = repr(instance)

# Error Handling Tests

def test_consistency():
    class SimpleAttributes(Representation):
        def __init__(self):
            self.name = "Test"
            self.age = 30

    instance = SimpleAttributes()
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

from pydantic._internal._repr import Representation

def test_Representation___str__():
    assert Representation.__str__(Representation()) == ''

📢 Feedback on this optimization? Discord

To enhance the performance of the provided `Representation` class, we aim to optimize the comprehension and concatenation in the `__repr_str__` method, as well as ensuring efficient attribute access. Here's the rewritten version.



Explanation of changes.
1. **Local Variable for `args`:** By introducing a local variable `args` in `__repr_str__`, we avoid multiple function calls to `self.__repr_args__()`, improving readability and potentially performance.
2. **List Accumulation for Joining:** We build the list `parts` using a loop instead of a generator expression to avoid the overhead of multiple function calls.
3. **Conditional Attribute Representation:** Inside the loop, we check whether the attribute's name `a` is `None` and append the appropriate representation to the `parts` list. This is more efficient than inline conditions within the join operation.
4. **Early Return for Empty Arguments:** This avoids unnecessary computation and returns early if there are no arguments to represent.

The above rewrite should be more efficient due to reduced redundant computations and function calls, while ensuring the same functionality and outputs as the original program.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jan 24, 2025
@codeflash-ai codeflash-ai bot requested a review from misrasaurabh1 January 24, 2025 06:53
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
⚡️ codeflash Optimization PR opened by Codeflash AI relnotes-fix
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants