Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Canonical ordering for aac_normalise tactic in master #143

Merged
merged 11 commits into from
Jun 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/deploy-docs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Set up Git repository
uses: actions/checkout@v2
uses: actions/checkout@v3

- name: Build coqdoc
uses: coq-community/docker-coq-action@v1
Expand Down
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@

src/aac.ml
.lia.cache
.nia.cache
.merlin
Makefile.coq
Makefile.coq.conf
Expand Down
20 changes: 20 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
# Changelog
All notable changes to this project will be documented in this file.

The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).

## [Unreleased]

## [8.19.1] - 2024-06-01

### Added

- `aac_normalise in H` tactic.
- `gcd` and `lcm` instances for `Nat`, `N`, and `Z`.

### Fixed

- Make the order of sums produced by `aac_normalise` tactic consistent across calls.

[Unreleased]: https://github.com/coq-community/aac-tactics/compare/v8.19.1...master
[8.19.1]: https://github.com/coq-community/aac-tactics/releases/tag/v8.19.1
10 changes: 10 additions & 0 deletions src/matcher.ml
Original file line number Diff line number Diff line change
Expand Up @@ -108,6 +108,9 @@ module Terms : sig
val equal_aac : units -> t -> t -> bool
val size: t -> int

(* permute symbols according to p *)
val map_syms: (symbol -> symbol) -> t -> t

(** {1 Terms in normal form}

A term in normal form is the canonical representative of the
Expand Down Expand Up @@ -162,6 +165,13 @@ end
| Sym (_,v)-> Array.fold_left (fun acc x -> size x + acc) 1 v
| _ -> 1

(* permute symbols according to p *)
let rec map_syms p = function
| Dot(s,u,v) -> Dot(p s, map_syms p u, map_syms p v)
| Plus(s,u,v) -> Plus(p s, map_syms p u, map_syms p v)
| Sym(s,u) -> Sym(p s, Array.map (map_syms p) u)
| Unit s -> Unit(p s)
| u -> u

type nf_term =
| TAC of symbol * nf_term mset
Expand Down
2 changes: 2 additions & 0 deletions src/matcher.mli
Original file line number Diff line number Diff line change
Expand Up @@ -118,6 +118,8 @@ sig
units of a same operator are not considered equal. *)
val equal_aac : units -> t -> t -> bool

(* permute symbols according to p *)
val map_syms: (symbol -> symbol) -> t -> t

(** {2 Normalised terms (canonical representation) }

Expand Down
49 changes: 24 additions & 25 deletions src/theory.ml
Original file line number Diff line number Diff line change
Expand Up @@ -724,6 +724,24 @@ module Trans = struct
let sigma = Gather.gather env sigma rlt envs (EConstr.of_constr (Constr.mkApp (l, [| Constr.mkRel 0;Constr.mkRel 0|]))) in
sigma

(* reorder the environment to make it (more) canonical *)
let reorder envs =
let rec insert k v = function
| [] -> [k,v]
| ((h,_)::_) as l when Constr.compare k h = -1 -> (k,v)::l
| y::q -> y::insert k v q
in
let insert k v l =
match v with Some v -> insert k v l | None -> l
in
let l = HMap.fold insert envs.discr [] in
let old = Hashtbl.copy envs.bloom_back in
PackTable.clear envs.bloom;
Hashtbl.clear envs.bloom_back;
envs.bloom_next := 1;
List.iter (fun (c,pack) -> add_bloom envs pack) l;
(fun s -> PackTable.find envs.bloom (Hashtbl.find old s))

(* [t_of_constr] buils a the abstract syntax tree of a constr,
updating in place the environment. Doing so, we infer all the
morphisms and the AC/A operators. It is mandatory to do so both
Expand All @@ -734,7 +752,8 @@ module Trans = struct
let sigma = Gather.gather env sigma rlt envs r in
let l,sigma = Parse.t_of_constr env sigma rlt envs l in
let r, sigma = Parse.t_of_constr env sigma rlt envs r in
l, r, sigma
let p = reorder envs in
Matcher.Terms.map_syms p l, Matcher.Terms.map_syms p r, sigma

(* An intermediate representation of the environment, with association lists for AC/A operators, and also the raw [packer] information *)

Expand Down Expand Up @@ -967,25 +986,6 @@ module Trans = struct
in
sigma,record

(* We want to lift down the indexes of symbols. *)
let renumber (l: (int * 'a) list ) =
let _, l = List.fold_left (fun (next,acc) (glob,x) ->
(next+1, (next,glob,x)::acc)
) (1,[]) l
in
let rec to_global loc = function
| [] -> assert false
| (local, global,x)::q when local = loc -> global
| _::q -> to_global loc q
in
let rec to_local glob = function
| [] -> assert false
| (local, global,x)::q when global = glob -> local
| _::q -> to_local glob q
in
let locals = List.map (fun (local,global,x) -> local,x) l in
locals, (fun x -> to_local x l) , (fun x -> to_global x l)

(** [build_sigma_maps] given a envs and some reif_params, we are
able to build the sigmas *)
let build_sigma_maps (rlt : Coq.Relation.t) zero ir : (sigmas * sigma_maps) Proofview.tactic =
Expand All @@ -995,11 +995,10 @@ module Trans = struct
let sigma = Proofview.Goal.sigma goal in
let sigma,rp = build_reif_params env sigma rlt zero in
Proofview.Unsafe.tclEVARS sigma
<*> let renumbered_sym, to_local, to_global = renumber ir.sym in
let env_sym = Sigma.of_list
<*> let env_sym = Sigma.of_list
rp.sym_ty
(rp.sym_null)
renumbered_sym
ir.sym
in
Coq.mk_letin "env_sym" env_sym >>= fun env_sym ->
let bin = (List.map ( fun (n,s) -> n, Bin.mk_pack rlt s) ir.bin) in
Expand Down Expand Up @@ -1028,8 +1027,8 @@ module Trans = struct
let f = List.map (fun (x,_) -> (x,Coq.Pos.of_int x)) in
let sigma_maps =
{
sym_to_pos = (let sym = f renumbered_sym in fun x -> (List.assoc (to_local x) sym));
bin_to_pos = (let bin = f bin in fun x -> (List.assoc x bin));
sym_to_pos = (let sym = f ir.sym in fun x -> (List.assoc x sym));
bin_to_pos = (let bin = f bin in fun x -> (List.assoc x bin));
units_to_pos = (let units = f units in fun x -> (List.assoc x units));
}
in
Expand Down
27 changes: 20 additions & 7 deletions tests/aac_135.v
Original file line number Diff line number Diff line change
Expand Up @@ -2,22 +2,34 @@ From Coq Require PeanoNat ZArith List Permutation Lia.
From AAC_tactics Require Import AAC.
From AAC_tactics Require Instances.

(** ** Introductory example

Here is a first example with relative numbers ([Z]): one can
rewrite an universally quantified hypothesis modulo the
associativity and commutativity of [Z.add]. *)

Section introduction.
Import ZArith.
Import Instances.Z.

Variables a b : Z.
Variables a b d e: Z.

Goal a + b = b + a.
aac_reflexivity.
Qed.

Goal b+a+d+e = b+a+e+d.
aac_normalise.
(* variable ordering is fixed since v8.19.1, so that this second call should be a noop *)
Fail progress aac_normalise.
reflexivity.
Qed.

Goal b+a+d = e+d -> d+a+b = d+e.
intro H. aac_normalise in H.
aac_normalise.
(* variable ordering is fixed since v8.19.1, so expressions should be normalised consistently across calss *)
assumption.
Qed.

Goal b+a+d = e+d -> d+a+b = d+e.
intro H. now aac_normalise in *.
Qed.

Goal forall c: bool, a + b = b + a.
intros c.
destruct c.
Expand All @@ -30,4 +42,5 @@ Section introduction.
- aac_reflexivity.
- aac_reflexivity.
Qed.

End introduction.
34 changes: 23 additions & 11 deletions theories/AAC.v
Original file line number Diff line number Diff line change
Expand Up @@ -281,14 +281,14 @@ Section s.
(** Lexicographic rpo over the normalised syntax *)
Fixpoint compare (u v: T) :=
match u,v with
| sum i l, sum j vs => lex (idx_compare i j) (mset_compare compare l vs)
| prd i l, prd j vs => lex (idx_compare i j) (list_compare compare l vs)
| sym i l, sym j vs => lex (idx_compare i j) (vcompare l vs)
| unit i , unit j => idx_compare i j
| sum i l, sum j vs => lex (Pos.compare i j) (mset_compare compare l vs)
| prd i l, prd j vs => lex (Pos.compare i j) (list_compare compare l vs)
| sym i l, sym j vs => lex (Pos.compare i j) (vcompare l vs)
| unit i , unit j => Pos.compare i j
| unit _ , _ => Lt
| _ , unit _ => Gt
| sum _ _, _ => Lt
| _ , sum _ _ => Gt
| _ , unit _ => Gt
| sym _ _, _ => Lt
| _ , sym _ _ => Gt
| prd _ _, _ => Lt
| _ , prd _ _ => Gt

Expand Down Expand Up @@ -335,14 +335,14 @@ Section s.
case (pos_compare_weak_spec p p0); intros; try constructor.
case (list_compare_weak_spec compare tcompare_weak_spec n n0); intros; try constructor.
- destruct v0; simpl; try constructor.
case_eq (idx_compare i i0); intro Hi; try constructor.
case_eq (Pos.compare i i0); intro Hi; try constructor.
(* the [symmetry] is required *)
apply idx_compare_reflect_eq in Hi. symmetry in Hi. subst.
apply pos_compare_reflect_eq in Hi. symmetry in Hi. subst.
case_eq (vcompare v v0); intro Hv; try constructor.
rewrite <- (vcompare_reflect_eqdep _ _ _ _ eq_refl Hv). constructor.
- destruct v; simpl; try constructor.
case_eq (idx_compare p p0); intro Hi; try constructor.
apply idx_compare_reflect_eq in Hi. symmetry in Hi. subst. constructor.
case_eq (Pos.compare p p0); intro Hi; try constructor.
apply pos_compare_reflect_eq in Hi. symmetry in Hi. subst. constructor.
- induction us; destruct vs; simpl; intros H Huv; try discriminate.
apply cast_eq, eq_nat_dec.
injection H; intro Hn.
Expand Down Expand Up @@ -961,3 +961,15 @@ Section t.
End t.

Declare ML Module "coq-aac-tactics.plugin".

Lemma transitivity4 {A R} {H: @Equivalence A R} a b a' b': R a a' -> R b b' -> R a b -> R a' b'.
Proof. now intros -> ->. Qed.
Tactic Notation "aac_normalise" "in" hyp(H) :=
eapply transitivity4 in H; [| aac_normalise; reflexivity | aac_normalise; reflexivity].

Ltac aac_normalise_all :=
aac_normalise;
repeat match goal with
| H: _ |- _ => aac_normalise in H
end.
Tactic Notation "aac_normalise" "in" "*" := aac_normalise_all.
38 changes: 34 additions & 4 deletions theories/Instances.v
Original file line number Diff line number Diff line change
Expand Up @@ -34,13 +34,25 @@ Module Peano.
#[export] Instance aac_Nat_max_Comm : Commutative eq Nat.max := Nat.max_comm.
#[export] Instance aac_Nat_max_Assoc : Associative eq Nat.max := Nat.max_assoc.
#[export] Instance aac_Nat_max_Idem : Idempotent eq Nat.max := Nat.max_idempotent.


#[export] Instance aac_Nat_gcd_Comm : Commutative eq Nat.gcd := Nat.gcd_comm.
#[export] Instance aac_Nat_gcd_Assoc : Associative eq Nat.gcd := Nat.gcd_assoc.
#[export] Instance aac_Nat_gcd_Idem : Idempotent eq Nat.gcd := Nat.gcd_diag.

#[export] Instance aac_Nat_lcm_Comm : Commutative eq Nat.lcm := Nat.lcm_comm.
#[export] Instance aac_Nat_lcm_Assoc : Associative eq Nat.lcm := Nat.lcm_assoc.
#[export] Instance aac_Nat_lcm_Idem : Idempotent eq Nat.lcm := Nat.lcm_diag.

#[export] Instance aac_Nat_mul_1_Unit : Unit eq Nat.mul 1 :=
Build_Unit eq Nat.mul 1 Nat.mul_1_l Nat.mul_1_r.
#[export] Instance aac_Nat_lcm_1_Unit : Unit eq Nat.lcm 1 :=
Build_Unit eq Nat.lcm 1 Nat.lcm_1_l Nat.lcm_1_r.
#[export] Instance aac_Nat_add_0_Unit : Unit eq Nat.add 0 :=
Build_Unit eq Nat.add (0) Nat.add_0_l Nat.add_0_r.
#[export] Instance aac_Nat_max_0_Unit : Unit eq Nat.max 0 :=
Build_Unit eq Nat.max 0 Nat.max_0_l Nat.max_0_r.
#[export] Instance aac_Nat_gcd_0_Unit : Unit eq Nat.gcd 0 :=
Build_Unit eq Nat.gcd 0 Nat.gcd_0_l Nat.gcd_0_r.

(** We also provide liftings from [Nat.le] to [eq] *)
#[export] Instance Nat_le_PreOrder : PreOrder Nat.le :=
Expand Down Expand Up @@ -68,7 +80,13 @@ Module Z.
#[export] Instance aac_Z_max_Comm : Commutative eq Z.max := Z.max_comm.
#[export] Instance aac_Z_max_Assoc : Associative eq Z.max := Z.max_assoc.
#[export] Instance aac_Z_max_Idem : Idempotent eq Z.max := Z.max_idempotent.


#[export] Instance aac_Z_gcd_Comm : Commutative eq Z.gcd := Z.gcd_comm.
#[export] Instance aac_Z_gcd_Assoc : Associative eq Z.gcd := Z.gcd_assoc.

#[export] Instance aac_Z_lcm_Comm : Commutative eq Z.lcm := Z.lcm_comm.
#[export] Instance aac_Z_lcm_Assoc : Associative eq Z.lcm := Z.lcm_assoc.

#[export] Instance aac_Z_mul_1_Unit : Unit eq Z.mul 1 :=
Build_Unit eq Z.mul 1 Z.mul_1_l Z.mul_1_r.
#[export] Instance aac_Z_add_0_Unit : Unit eq Z.add 0 :=
Expand Down Expand Up @@ -123,13 +141,25 @@ Module N.
#[export] Instance aac_N_max_Comm : Commutative eq N.max := N.max_comm.
#[export] Instance aac_N_max_Assoc : Associative eq N.max := N.max_assoc.
#[export] Instance aac_N_max_Idem : Idempotent eq N.max := N.max_idempotent.

#[export] Instance aac_N_gcd_Comm : Commutative eq N.gcd := N.gcd_comm.
#[export] Instance aac_N_gcd_Assoc : Associative eq N.gcd := N.gcd_assoc.
#[export] Instance aac_N_gcd_Idem : Idempotent eq N.gcd := N.gcd_diag.

#[export] Instance aac_N_lcm_Comm : Commutative eq N.lcm := N.lcm_comm.
#[export] Instance aac_N_lcm_Assoc : Associative eq N.lcm := N.lcm_assoc.
#[export] Instance aac_N_lcm_Idem : Idempotent eq N.lcm := N.lcm_diag.

#[export] Instance aac_N_mul_1_Unit : Unit eq N.mul (1)%N :=
Build_Unit eq N.mul (1)%N N.mul_1_l N.mul_1_r.
Build_Unit eq N.mul 1 N.mul_1_l N.mul_1_r.
#[export] Instance aac_N_lcm_1_Unit : Unit eq N.lcm (1)%N :=
Build_Unit eq N.lcm 1 N.lcm_1_l N.lcm_1_r.
#[export] Instance aac_N_add_0_Unit : Unit eq N.add (0)%N :=
Build_Unit eq N.add (0)%N N.add_0_l N.add_0_r.
Build_Unit eq N.add 0 N.add_0_l N.add_0_r.
#[export] Instance aac_N_max_0_Unit : Unit eq N.max 0 :=
Build_Unit eq N.max 0 N.max_0_l N.max_0_r.
#[export] Instance aac_N_gcd_0_Unit : Unit eq N.gcd 0 :=
Build_Unit eq N.gcd 0 N.gcd_0_l N.gcd_0_r.

(* We also provide liftings from [N.le] to [eq] *)
#[export] Instance N_le_PreOrder : PreOrder N.le :=
Expand Down
24 changes: 22 additions & 2 deletions theories/Tutorial.v
Original file line number Diff line number Diff line change
Expand Up @@ -356,19 +356,39 @@ End Peano.

Section AAC_normalise.
Import Instances.Z.
Import ZArith.
Import ZArith Lia.
Open Scope Z_scope.

Variable a b c d : Z.
Goal a + (b + c*c*d) + a + 0 + d*1 = a.
aac_normalise.
Abort.

Goal b + 0 + a = c*1 -> a+b = c.
intro H.
aac_normalise in H.
assumption.
Qed.

Goal b + 0 + a = c*1+d -> a+b = d*(1+0)+c.
intro.
aac_normalise in *.
assumption.
Qed.

Goal Z.max (a+b) (b+a) = a+b.
aac_reflexivity.
Show Proof.
Abort.

(** Example by Abhishek Anand extracted from verification of a C++ gcd function *)
Goal forall a b a' b' : Z,
0 < b' -> Z.gcd a' b' = Z.gcd a b -> Z.gcd b' (a' mod b') = Z.gcd a b.
Proof.
intros.
aac_rewrite Z.gcd_mod; try lia.
aac_normalise_all.
lia.
Qed.
End AAC_normalise.

(** ** Examples from previous website *)
Expand Down
Loading
Loading