Skip to content

Commit

Permalink
TMP: Do some more on manifolds
Browse files Browse the repository at this point in the history
  • Loading branch information
Columbus240 committed Aug 20, 2023
1 parent 4f35788 commit 014c7f2
Showing 1 changed file with 49 additions and 2 deletions.
51 changes: 49 additions & 2 deletions theories/Topology/Manifolds.v
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
Set Default Goal Selector "!".
From Coq Require Import Image.
From Topology Require Import Homeomorphisms.
From Topology Require Import SubspaceTopology.
Expand Down Expand Up @@ -286,7 +287,7 @@ Proof.
apply proj1_sig_injective.
}
etransitivity; symmetry.
apply subspace_inc_inverse_image.
{ apply subspace_inc_inverse_image. }
replace (Im _ _) with (Intersection U (Im V (subspace_inc U))).
{ reflexivity. }
apply Extensionality_Ensembles; split; red; intros.
Expand Down Expand Up @@ -645,9 +646,55 @@ Proof.
+ apply Sphere_lhom_Rn.
Qed.

Conjecture classification_zero_dim_mfd :
Lemma singleton_open_impl_discrete (X : TopologicalSpace) :
(forall x : X, open (Singleton x)) ->
(forall U : Ensemble X, open U).
Proof.
intros.
replace U with (IndexedUnion (fun x : { x | In U x } => Singleton (proj1_sig x))).
{ apply open_indexed_union.
auto.
}
apply Extensionality_Ensembles; split; red; intros.
- destruct H0. inversion H0; subst; clear H0.
apply proj2_sig.
- exists (exist _ x H0).
constructor.
Qed.

Lemma mfd_zero_dim_discrete (M : TopologicalSpace) (U : Ensemble M) :
Manifold M 0 ->
open U.
Proof.
intros.
apply singleton_open_impl_discrete.
clear U.
intros.
red in H.
destruct H as [? []].
red in H1.
destruct (H1 x) as [U [V [? []]]].
admit.
Admitted.

Theorem classification_zero_dim_mfd :
forall M, Manifold M 0 ->
homeomorphic M (DiscreteTopology M).
Proof.
intros.
unshelve econstructor.
{ exact (fun x => x). }
unshelve econstructor.
{ exact (fun x => x). }
{ intros ? ?.
apply mfd_zero_dim_discrete.
assumption.
}
{ intros ? ?.
constructor.
}
all: auto.
Qed.

Conjecture classification_one_dim_mfd :
forall M, Manifold M 1 -> connected M ->
Expand Down

0 comments on commit 014c7f2

Please sign in to comment.