-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
209 lines (165 loc) · 7.66 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import numpy as np
import torch as T
from DDPGAgent import DDPGAgent
from Noise import OrnsteinUhlenbeckActionNoise, NormalActionNoise
import os
import argparse
import json
import gym
import random
from collections import deque
device = T.device('cuda' if T.cuda.is_available() else 'cpu')
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str)
parser.add_argument('--experiment_name', default="ddpg", type=str)
parser.add_argument('--episodes', default=10000, type=int)
parser.add_argument('--episode_length', default=1000, type=int)
parser.add_argument('--exploration', default=50, type=int)
parser.add_argument('--train_interval', default=1, type=int)
parser.add_argument('--eval_eps', default=5, type=int)
parser.add_argument('--eval_interval', default=10, type=int)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--min_replay_size', default=1000, type=int)
parser.add_argument('--replay_buffer_size', default=1000000, type=int)
parser.add_argument('--pi_lr', default=0.0001, type=float)
parser.add_argument('--q_lr', default=0.001, type=float)
parser.add_argument('--gamma', default=0.99, type=float)
parser.add_argument('--tau', default=0.005, type=float)
parser.add_argument('--render', dest='render', action='store_true')
parser.add_argument('--gaussian_noise', dest='gaussian_noise', action='store_true')
parser.add_argument('--noise_param', default=0.2, type=float)
parser.add_argument('--seed', default=0, type=int)
parser.set_defaults(render=False)
parser.set_defaults(gaussian_noise=False)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
experiment_name = args.experiment_name
env = gym.make(args.env)
T.manual_seed(args.seed)
T.backends.cudnn.deterministic = True
T.backends.cudnn.benchmark = False
np.random.seed(args.seed)
random.seed(args.seed)
env.seed(args.seed)
print(f"================= {'Environment Information'.center(30)} =================")
print(f"Action space shape: {env.env.action_space.shape}")
print(f"Action space upper bound: {env.env.action_space.high}")
print(f"Action space lower bound: {env.env.action_space.low}")
print(f"Observation space shape: {env.env.observation_space.shape}")
print(f"Observation space upper bound: {np.max(env.env.observation_space.high)}")
print(f"Observation space lower bound: {np.min(env.env.observation_space.low)}")
print(f"================= {'Parameters'.center(30)} =================")
for k, v in args.__dict__.items():
print(f"{k:<20}: {v}")
# Experiment directory storage
counter = 1
env_path = os.path.join("experiments", args.env)
if not os.path.exists(env_path):
os.mkdir(env_path)
while True:
try:
experiment_path = os.path.join(env_path, f"{experiment_name}_{counter}")
os.mkdir(experiment_path)
os.mkdir(os.path.join(experiment_path, "saves"))
break
except FileExistsError as e:
counter += 1
with open(os.path.join(experiment_path, 'parameters.json'), 'w') as f:
json.dump(args.__dict__, f, indent=2)
n_actions = env.action_space.shape[0] if type(env.action_space) == gym.spaces.box.Box else env.action_space.n
# TODO: Modify this to call any other algorithm
algorithm = DDPGAgent
agent = algorithm(**args.__dict__,
input_dims=env.observation_space.shape,
n_actions=n_actions)
print(f"================= {'Noise Information'.center(30)} =================")
if args.gaussian_noise:
noise = NormalActionNoise(mean=0, sigma=args.noise_param, size=n_actions)
print(noise)
else:
noise = OrnsteinUhlenbeckActionNoise(np.zeros(n_actions), sigma=args.noise_param)
print(noise)
print(f"================= {'Agent Information'.center(30)} =================")
print(agent)
print(f"================= {'Begin Training'.center(30)} =================")
counter = 0
reward_history = deque(maxlen=100)
for episode in range(args.episodes):
obs = env.reset()
noise.reset()
episode_reward = 0.0
actor_loss = 0.0
critic_loss = 0.0
# Generate rollout and train agent
for step in range(args.episode_length):
if args.render:
env.render()
# Get actions
with T.no_grad():
if episode >= args.exploration:
action = agent.action(obs) + T.tensor(noise(), dtype=T.float, device=device)
action = T.clamp(action, -1.0, 1.0)
else:
action = agent.random_action()
# Take step in environment
new_obs, reward, done, _ = env.step(action.detach().cpu().numpy() * env.action_space.high)
episode_reward += reward
# Store experience
agent.experience(obs, action.detach().cpu().numpy(), reward, new_obs, done)
# Train agent
if counter % args.train_interval == 0:
if agent.replay_buffer.size() > agent.min_replay_size:
counter = 0
loss = agent.train()
# Loss information kept for monitoring purposes during training
actor_loss += loss['actor_loss']
critic_loss += loss['critic_loss']
agent.update()
# Update obs
obs = new_obs
# Update counter
counter += 1
# End episode if done
if done:
break
reward_history.append(episode_reward)
print(f"Episode: {episode} Episode reward: {episode_reward} Average reward: {np.mean(reward_history)}")
# print(f"Actor loss: {actor_loss/(step/args.train_interval)} Critic loss: {critic_loss/(step/args.train_interval)}")
# Evaluate
if episode % args.eval_interval == 0:
evaluation_rewards = 0
for evalutaion_episode in range(args.eval_eps):
obs = env.reset()
rewards = 0
for step in range(args.episode_length):
if args.render:
env.render()
# Get actions
with T.no_grad():
action = agent.action(obs)
# Take step in environment
new_obs, reward, done, _ = env.step(action.detach().cpu().numpy() * env.action_space.high)
# Update obs
obs = new_obs
# Update rewards
rewards += reward
# End episode if done
if done:
break
evaluation_rewards += rewards
evaluation_rewards = round(evaluation_rewards / args.eval_eps, 3)
save_path = os.path.join(experiment_path, "saves")
agent.save_agent(save_path)
print(f"Episode: {episode} Average evaluation reward: {evaluation_rewards} Agent saved at {save_path}")
with open(f"{experiment_path}/evaluation_rewards.csv", "a") as f:
f.write(f"{episode}, {evaluation_rewards}\n")
try:
if evaluation_rewards > env.spec.reward_threshold * 1.1: # x 1.1 because of small eval_episodes
print(f"Environment solved after {episode} episodes")
break
except Exception as e:
if evaluation_rewards > -120:
print(f"Environment solved after {episode} episodes")
break