Skip to content

csci-599-applied-ml-for-games/Transfer-Learning-Atari-Games

Repository files navigation

Transfer-Learning-Atari-Games

It can emulate any of the following games:

['Asterix', 'Asteroids', 'MsPacman', 'Kaboom', 'BankHeist', 'Kangaroo', 'Skiing', 'FishingDerby', 'Krull', 'Berzerk', 'Tutankham', 'Zaxxon', 'Venture', 'Riverraid', 'Centipede', 'Adventure', 'BeamRider', 'CrazyClimber', 'TimePilot', 'Carnival', 'Tennis', 'Seaquest', 'Bowling', 'SpaceInvaders', 'Freeway', 'YarsRevenge', 'RoadRunner', 'JourneyEscape', 'WizardOfWor', 'Gopher', 'Breakout', 'StarGunner', 'Atlantis', 'DoubleDunk', 'Hero', 'BattleZone', 'Solaris', 'UpNDown', 'Frostbite', 'KungFuMaster', 'Pooyan', 'Pitfall', 'MontezumaRevenge', 'PrivateEye', 'AirRaid', 'Amidar', 'Robotank', 'DemonAttack', 'Defender', 'NameThisGame', 'Phoenix', 'Gravitar', 'ElevatorAction', 'Pong', 'VideoPinball', 'IceHockey', 'Boxing', 'Assault', 'Alien', 'Qbert', 'Enduro', 'ChopperCommand', 'Jamesbond']

Objective

The objective of this project is to implement and compare various RL approaches with atari games as a common environment, and to measure the impact of transfer learning across similar objective games.

Demo Video

https://youtu.be/EOIF9reE8zI

Usage

  1. Clone the repo.
  2. Go to the project's root folder.
  3. Install required packages pip install -r requirements.txt.
  4. Training example - python3 atari.py -g=Pong -m=ddqn_train.
  5. Testing example - python3 atari.py -g=Pong -m=ddqn_test -r=True.
  6. Help python atari.py --help.

Model Architecture

Deep Convolutional Neural Network by DeepMind

Know issues

  1. When last tried Tensorflow didn't support 3.7.x, use 3.6 versions

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •