A Pytorch re-implementation of “Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNN”
- This repository is a reproduction of the GeoCNN, which can support multiple GPUs.
- My enviroment:
- If you like graph neural network, too. Welcome to our 🐧 QQ group:
832405795
this implementation | original paper |
---|---|
93.2 | 93.4 |
- Prepare Data
- Download ModelNet40 data set
- Move
modelnet40_normal_resampled.zip
intodata/ModelNet40_10000
- Unzip
modelnet40_normal_resampled.zip
- Rename
modelnet40_normal_resampled
toraw
- Train
- We can change args in the Configuration part of the code if you want
- Then let’s start training:
python geocnn.py
- Test
@article{DBLP:journals/corr/abs-1811-07782,
author = {Shiyi Lan and
Ruichi Yu and
Gang Yu and
Larry S. Davis},
title = {Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNN},
journal = {CoRR},
volume = {abs/1811.07782},
year = {2018},
url = {http://arxiv.org/abs/1811.07782},
archivePrefix = {arXiv},
eprint = {1811.07782},
timestamp = {Mon, 26 Nov 2018 12:52:45 +0100},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1811-07782},
bibsource = {dblp computer science bibliography, https://dblp.org}
}