- demo Video: https://youtu.be/Dn9S8p49dqE
🏃 Choi sanghyun 🏃 Kim sungjo 🏃 Park meenhee
- OpenCV
- sklean
- pillow
- numpy 1.15.0
- tensorflow-gpu 1.13.1
- CUDA 10.0
It uses:
0.Requirements
pip install -r requirements.txt
1. Download the code to your computer.
git clone https://github.com/yehengchen/Object-Detection-and-Tracking.git
2. Download [yolov3.weights] and place it in deep_sort_yolov3/model_data/
3. Convert the Darknet YOLO model to a Keras model:
$ python convert.py model_data/yolov3.cfg model_data/yolov3.weights model_data/yolo.h5
4. Run the YOLO_DEEP_SORT:
$ python main.py -c [CLASS NAME] -i [INPUT VIDEO PATH]
$ python main.py -c person -i ./test_video/testvideo.avi
@article{yolov3,
title={YOLOv3: An Incremental Improvement},
author={Redmon, Joseph and Farhadi, Ali},
journal = {arXiv},
year={2018}
}
@inproceedings{Wojke2017simple,
title={Simple Online and Realtime Tracking with a Deep Association Metric},
author={Wojke, Nicolai and Bewley, Alex and Paulus, Dietrich},
booktitle={2017 IEEE International Conference on Image Processing (ICIP)},
year={2017},
pages={3645--3649},
organization={IEEE},
doi={10.1109/ICIP.2017.8296962}
}
@inproceedings{Wojke2018deep,
title={Deep Cosine Metric Learning for Person Re-identification},
author={Wojke, Nicolai and Bewley, Alex},
booktitle={2018 IEEE Winter Conference on Applications of Computer Vision (WACV)},
year={2018},
pages={748--756},
organization={IEEE},
doi={10.1109/WACV.2018.00087}
}