Skip to content

Commit

Permalink
Benchmarks and Diagrams (#169)
Browse files Browse the repository at this point in the history
By submitting this pull request, I confirm that my contribution is made
under the terms of the [MIT
license](https://github.com/dafny-lang/dafny/blob/master/LICENSE.txt).

---------

Co-authored-by: Tancrède Lepoint <tlepoint@users.noreply.github.com>
Co-authored-by: John Tristan <trjohnb@amazon.com>
  • Loading branch information
3 people authored Mar 18, 2024
1 parent 28f5169 commit be33d9d
Show file tree
Hide file tree
Showing 7 changed files with 149 additions and 0 deletions.
6 changes: 6 additions & 0 deletions .gitmodules
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
[submodule "docs/py/Benchmarks/discrete-gaussian-differential-privacy"]
path = docs/py/Benchmarks/discrete-gaussian-differential-privacy
url = https://github.com/IBM/discrete-gaussian-differential-privacy/
[submodule "docs/py/Benchmarks/differential-privacy-library"]
path = docs/py/Benchmarks/differential-privacy-library
url = https://github.com/IBM/differential-privacy-library/
3 changes: 3 additions & 0 deletions build/py/run_gaussian_benchmarks.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
#1/bin/bash

PYTHONPATH=.:build/py/DafnyVMC-py:docs/py/benchmarks/differential-privacy-library:docs/py/benchmarks/discrete-gaussian-differential-privacy python3 docs/py/benchmarks/gaussian_benchmarks.py
3 changes: 3 additions & 0 deletions build/py/run_gaussian_diagrams.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
#1/bin/bash

PYTHONPATH=.:build/py/DafnyVMC-py:docs/py/benchmarks/differential-privacy-library:docs/py/benchmarks/discrete-gaussian-differential-privacy python3 docs/py/benchmarks/gaussian_diagrams.py
1 change: 1 addition & 0 deletions docs/py/Benchmarks/differential-privacy-library
1 change: 1 addition & 0 deletions docs/py/Benchmarks/discrete-gaussian-differential-privacy
90 changes: 90 additions & 0 deletions docs/py/Benchmarks/gaussian_benchmarks.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
import timeit
import secrets
import numpy
import matplotlib.pyplot as plt
from decimal import Decimal
import DafnyVMC
from diffprivlib.mechanisms import GaussianDiscrete
import discretegauss
from datetime import datetime
import tqdm

vmc_mean = []
vmc_std = []
ibm_dgdp_mean = []
ibm_dgdp_std = []
ibm_dpl_mean = []
ibm_dpl_std = []

fig,ax1 = plt.subplots()

rng = secrets.SystemRandom()
r = DafnyVMC.Random()

sigmas = []
for epsilon_times_100 in tqdm.tqdm(range(1, 500, 2)):
vmc = []
ibm_dgdp = []
ibm_dpl = []

# The GaussianDiscrete class does not expose the sampler directly, and needs to be instantiated with `(epsilon, delta)`.
# We access its `_scale` member to get the values `sigma`'s needed by `DafnyVMC` and `discretegauss`.
g = GaussianDiscrete(epsilon=0.01 * epsilon_times_100, delta=0.00001)
sigma = g._scale
sigmas += [sigma]

sigma_num, sigma_denom = Decimal(sigma).as_integer_ratio()
sigma_squared = sigma ** 2

for i in range(1100):
start_time = timeit.default_timer()
r.DiscreteGaussianSample(sigma_num, sigma_denom)
elapsed = timeit.default_timer() - start_time
vmc.append(elapsed)

for i in range(1100):
start_time = timeit.default_timer()
discretegauss.sample_dgauss(sigma_squared, rng)
elapsed = timeit.default_timer() - start_time
ibm_dgdp.append(elapsed)

for i in range(1100):
start_time = timeit.default_timer()
# The sampler is not directly accessible, so we call `.randomise(0)` instead, as it adds a noise drawn according to a discrete Gaussian to `0`.
g.randomise(0)
elapsed = timeit.default_timer() - start_time
ibm_dpl.append(elapsed)

vmc = numpy.array(vmc[-1000:])
ibm_dgdp = numpy.array(ibm_dgdp[-1000:])
ibm_dpl = numpy.array(ibm_dpl[-1000:])

vmc_mean.append(vmc.mean()*1000.0)
vmc_std.append(vmc.std()*1000.0)
ibm_dgdp_mean.append(ibm_dgdp.mean()*1000.0)
ibm_dgdp_std.append(ibm_dgdp.std()*1000.0)
ibm_dpl_mean.append(ibm_dpl.mean()*1000.0)
ibm_dpl_std.append(ibm_dpl.std()*1000.0)


ax1.plot(sigmas, vmc_mean, color='green', linewidth=1.0, label='VMC')
ax1.fill_between(sigmas, numpy.array(vmc_mean)-0.5*numpy.array(vmc_std), numpy.array(vmc_mean)+0.5*numpy.array(vmc_std),
alpha=0.2, facecolor='k',
linewidth=2, linestyle='dashdot', antialiased=True)

ax1.plot(sigmas, ibm_dgdp_mean, color='red', linewidth=1.0, label='IBM-DGDP')
ax1.fill_between(sigmas, numpy.array(ibm_dgdp_mean)-0.5*numpy.array(ibm_dgdp_std), numpy.array(ibm_dgdp_mean)+0.5*numpy.array(ibm_dgdp_std),
alpha=0.2, facecolor='y',
linewidth=2, linestyle='dashdot', antialiased=True)

ax1.plot(sigmas, ibm_dpl_mean, color='purple', linewidth=1.0, label='IBM-DPL')
ax1.fill_between(sigmas, numpy.array(ibm_dpl_mean)-0.5*numpy.array(ibm_dpl_std), numpy.array(ibm_dpl_mean)+0.5*numpy.array(ibm_dpl_std),
alpha=0.2, facecolor='y',
linewidth=2, linestyle='dashdot', antialiased=True)

ax1.set_xlabel("Sigma")
ax1.set_ylabel("Sampling Time (ms)")
plt.legend(loc = 'best')
now = datetime.now()
filename = 'GaussianBenchmarks' + now.strftime("%H%M%S") + '.pdf'
plt.savefig(filename)
45 changes: 45 additions & 0 deletions docs/py/Benchmarks/gaussian_diagrams.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
import matplotlib.pyplot as plt
import secrets
from decimal import Decimal
from datetime import datetime
import DafnyVMC
import discretegauss
from diffprivlib.mechanisms import GaussianDiscrete

fig, axs = plt.subplots(8, 3, figsize=(20, 20))

rng = secrets.SystemRandom()
r = DafnyVMC.Random()

for i in range(8):
vmc_data = []
ibm_dgdp_data = []
ibm_dpl_data = []

epsilon_times_100 = 1 + (i**2)*2.5
g = GaussianDiscrete(epsilon=0.01 * epsilon_times_100, delta=0.00001)

sigma = g._scale
sigma_squared = sigma ** 2
sigma_num, sigma_denom = Decimal(sigma).as_integer_ratio()

title_vmc = 'VMC, Sigma = ' + str(sigma)
title_ibm_dgdp = 'IBM-DGDP, Sigma = ' + str(sigma)
title_ibm_dpl = 'IBM-DPL, Sigma = ' + str(sigma)

for _ in range(100000):
vmc_data.append(r.DiscreteGaussianSample(sigma_num, sigma_denom))
ibm_dgdp_data.append(discretegauss.sample_dgauss(sigma_squared, rng))
ibm_dpl_data.append(g.randomise(0))

axs[i, 0].hist(vmc_data, color='lightgreen', ec='black', bins=50)
axs[i, 0].set_title(title_vmc)
axs[i, 1].hist(ibm_dgdp_data, color='lightgreen', ec='black', bins=50)
axs[i, 1].set_title(title_ibm_dgdp)
axs[i, 2].hist(ibm_dpl_data, color='lightgreen', ec='black', bins=50)
axs[i, 2].set_title(title_ibm_dpl)

now = datetime.now()
filename = 'GaussianDiagrams' + now.strftime("%H%M%S") + '.pdf'
plt.subplots_adjust(wspace=0.4, hspace=0.4)
plt.savefig(filename)

0 comments on commit be33d9d

Please sign in to comment.