-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
By submitting this pull request, I confirm that my contribution is made under the terms of the [MIT license](https://github.com/dafny-lang/dafny/blob/master/LICENSE.txt). --------- Co-authored-by: Tancrède Lepoint <tlepoint@users.noreply.github.com> Co-authored-by: John Tristan <trjohnb@amazon.com>
- Loading branch information
1 parent
28f5169
commit be33d9d
Showing
7 changed files
with
149 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
[submodule "docs/py/Benchmarks/discrete-gaussian-differential-privacy"] | ||
path = docs/py/Benchmarks/discrete-gaussian-differential-privacy | ||
url = https://github.com/IBM/discrete-gaussian-differential-privacy/ | ||
[submodule "docs/py/Benchmarks/differential-privacy-library"] | ||
path = docs/py/Benchmarks/differential-privacy-library | ||
url = https://github.com/IBM/differential-privacy-library/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
#1/bin/bash | ||
|
||
PYTHONPATH=.:build/py/DafnyVMC-py:docs/py/benchmarks/differential-privacy-library:docs/py/benchmarks/discrete-gaussian-differential-privacy python3 docs/py/benchmarks/gaussian_benchmarks.py |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
#1/bin/bash | ||
|
||
PYTHONPATH=.:build/py/DafnyVMC-py:docs/py/benchmarks/differential-privacy-library:docs/py/benchmarks/discrete-gaussian-differential-privacy python3 docs/py/benchmarks/gaussian_diagrams.py |
Submodule differential-privacy-library
added at
2ec586
Submodule discrete-gaussian-differential-privacy
added at
cb190d
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
import timeit | ||
import secrets | ||
import numpy | ||
import matplotlib.pyplot as plt | ||
from decimal import Decimal | ||
import DafnyVMC | ||
from diffprivlib.mechanisms import GaussianDiscrete | ||
import discretegauss | ||
from datetime import datetime | ||
import tqdm | ||
|
||
vmc_mean = [] | ||
vmc_std = [] | ||
ibm_dgdp_mean = [] | ||
ibm_dgdp_std = [] | ||
ibm_dpl_mean = [] | ||
ibm_dpl_std = [] | ||
|
||
fig,ax1 = plt.subplots() | ||
|
||
rng = secrets.SystemRandom() | ||
r = DafnyVMC.Random() | ||
|
||
sigmas = [] | ||
for epsilon_times_100 in tqdm.tqdm(range(1, 500, 2)): | ||
vmc = [] | ||
ibm_dgdp = [] | ||
ibm_dpl = [] | ||
|
||
# The GaussianDiscrete class does not expose the sampler directly, and needs to be instantiated with `(epsilon, delta)`. | ||
# We access its `_scale` member to get the values `sigma`'s needed by `DafnyVMC` and `discretegauss`. | ||
g = GaussianDiscrete(epsilon=0.01 * epsilon_times_100, delta=0.00001) | ||
sigma = g._scale | ||
sigmas += [sigma] | ||
|
||
sigma_num, sigma_denom = Decimal(sigma).as_integer_ratio() | ||
sigma_squared = sigma ** 2 | ||
|
||
for i in range(1100): | ||
start_time = timeit.default_timer() | ||
r.DiscreteGaussianSample(sigma_num, sigma_denom) | ||
elapsed = timeit.default_timer() - start_time | ||
vmc.append(elapsed) | ||
|
||
for i in range(1100): | ||
start_time = timeit.default_timer() | ||
discretegauss.sample_dgauss(sigma_squared, rng) | ||
elapsed = timeit.default_timer() - start_time | ||
ibm_dgdp.append(elapsed) | ||
|
||
for i in range(1100): | ||
start_time = timeit.default_timer() | ||
# The sampler is not directly accessible, so we call `.randomise(0)` instead, as it adds a noise drawn according to a discrete Gaussian to `0`. | ||
g.randomise(0) | ||
elapsed = timeit.default_timer() - start_time | ||
ibm_dpl.append(elapsed) | ||
|
||
vmc = numpy.array(vmc[-1000:]) | ||
ibm_dgdp = numpy.array(ibm_dgdp[-1000:]) | ||
ibm_dpl = numpy.array(ibm_dpl[-1000:]) | ||
|
||
vmc_mean.append(vmc.mean()*1000.0) | ||
vmc_std.append(vmc.std()*1000.0) | ||
ibm_dgdp_mean.append(ibm_dgdp.mean()*1000.0) | ||
ibm_dgdp_std.append(ibm_dgdp.std()*1000.0) | ||
ibm_dpl_mean.append(ibm_dpl.mean()*1000.0) | ||
ibm_dpl_std.append(ibm_dpl.std()*1000.0) | ||
|
||
|
||
ax1.plot(sigmas, vmc_mean, color='green', linewidth=1.0, label='VMC') | ||
ax1.fill_between(sigmas, numpy.array(vmc_mean)-0.5*numpy.array(vmc_std), numpy.array(vmc_mean)+0.5*numpy.array(vmc_std), | ||
alpha=0.2, facecolor='k', | ||
linewidth=2, linestyle='dashdot', antialiased=True) | ||
|
||
ax1.plot(sigmas, ibm_dgdp_mean, color='red', linewidth=1.0, label='IBM-DGDP') | ||
ax1.fill_between(sigmas, numpy.array(ibm_dgdp_mean)-0.5*numpy.array(ibm_dgdp_std), numpy.array(ibm_dgdp_mean)+0.5*numpy.array(ibm_dgdp_std), | ||
alpha=0.2, facecolor='y', | ||
linewidth=2, linestyle='dashdot', antialiased=True) | ||
|
||
ax1.plot(sigmas, ibm_dpl_mean, color='purple', linewidth=1.0, label='IBM-DPL') | ||
ax1.fill_between(sigmas, numpy.array(ibm_dpl_mean)-0.5*numpy.array(ibm_dpl_std), numpy.array(ibm_dpl_mean)+0.5*numpy.array(ibm_dpl_std), | ||
alpha=0.2, facecolor='y', | ||
linewidth=2, linestyle='dashdot', antialiased=True) | ||
|
||
ax1.set_xlabel("Sigma") | ||
ax1.set_ylabel("Sampling Time (ms)") | ||
plt.legend(loc = 'best') | ||
now = datetime.now() | ||
filename = 'GaussianBenchmarks' + now.strftime("%H%M%S") + '.pdf' | ||
plt.savefig(filename) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
import matplotlib.pyplot as plt | ||
import secrets | ||
from decimal import Decimal | ||
from datetime import datetime | ||
import DafnyVMC | ||
import discretegauss | ||
from diffprivlib.mechanisms import GaussianDiscrete | ||
|
||
fig, axs = plt.subplots(8, 3, figsize=(20, 20)) | ||
|
||
rng = secrets.SystemRandom() | ||
r = DafnyVMC.Random() | ||
|
||
for i in range(8): | ||
vmc_data = [] | ||
ibm_dgdp_data = [] | ||
ibm_dpl_data = [] | ||
|
||
epsilon_times_100 = 1 + (i**2)*2.5 | ||
g = GaussianDiscrete(epsilon=0.01 * epsilon_times_100, delta=0.00001) | ||
|
||
sigma = g._scale | ||
sigma_squared = sigma ** 2 | ||
sigma_num, sigma_denom = Decimal(sigma).as_integer_ratio() | ||
|
||
title_vmc = 'VMC, Sigma = ' + str(sigma) | ||
title_ibm_dgdp = 'IBM-DGDP, Sigma = ' + str(sigma) | ||
title_ibm_dpl = 'IBM-DPL, Sigma = ' + str(sigma) | ||
|
||
for _ in range(100000): | ||
vmc_data.append(r.DiscreteGaussianSample(sigma_num, sigma_denom)) | ||
ibm_dgdp_data.append(discretegauss.sample_dgauss(sigma_squared, rng)) | ||
ibm_dpl_data.append(g.randomise(0)) | ||
|
||
axs[i, 0].hist(vmc_data, color='lightgreen', ec='black', bins=50) | ||
axs[i, 0].set_title(title_vmc) | ||
axs[i, 1].hist(ibm_dgdp_data, color='lightgreen', ec='black', bins=50) | ||
axs[i, 1].set_title(title_ibm_dgdp) | ||
axs[i, 2].hist(ibm_dpl_data, color='lightgreen', ec='black', bins=50) | ||
axs[i, 2].set_title(title_ibm_dpl) | ||
|
||
now = datetime.now() | ||
filename = 'GaussianDiagrams' + now.strftime("%H%M%S") + '.pdf' | ||
plt.subplots_adjust(wspace=0.4, hspace=0.4) | ||
plt.savefig(filename) |