Skip to content

More benchmarks #177

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions build/py/run_bernoulliexpneg_benchmarks.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
#1/bin/bash

PYTHONPATH=.:build/py/DafnyVMC-py:docs/py/benchmarks/differential-privacy-library:docs/py/benchmarks/discrete-gaussian-differential-privacy python3 docs/py/benchmarks/bernoulliexpneg_benchmarks.py
3 changes: 3 additions & 0 deletions build/py/run_gaussian_benchmarks_small.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
#1/bin/bash

PYTHONPATH=.:build/py/DafnyVMC-py:docs/py/benchmarks/differential-privacy-library:docs/py/benchmarks/discrete-gaussian-differential-privacy python3 docs/py/benchmarks/gaussian_benchmarks_small.py
3 changes: 3 additions & 0 deletions build/py/run_laplace_benchmarks.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
#1/bin/bash

PYTHONPATH=.:build/py/DafnyVMC-py:docs/py/benchmarks/differential-privacy-library:docs/py/benchmarks/discrete-gaussian-differential-privacy python3 docs/py/benchmarks/laplace_benchmarks.py
3 changes: 3 additions & 0 deletions build/py/run_laplacesampleloop_benchmarks.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
#1/bin/bash

PYTHONPATH=.:build/py/DafnyVMC-py:docs/py/benchmarks/differential-privacy-library:docs/py/benchmarks/discrete-gaussian-differential-privacy python3 docs/py/benchmarks/laplacesampleloop_benchmarks.py
3 changes: 3 additions & 0 deletions build/py/run_laplacesampleloopin2_benchmarks.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
#1/bin/bash

PYTHONPATH=.:build/py/DafnyVMC-py:docs/py/benchmarks/differential-privacy-library:docs/py/benchmarks/discrete-gaussian-differential-privacy python3 docs/py/benchmarks/laplacesampleloopin2_benchmarks.py
3 changes: 3 additions & 0 deletions build/py/run_laplacesampleloopin2_benchmarks_small.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
#1/bin/bash

PYTHONPATH=.:build/py/DafnyVMC-py:docs/py/benchmarks/differential-privacy-library:docs/py/benchmarks/discrete-gaussian-differential-privacy python3 docs/py/benchmarks/laplacesampleloopin2_benchmarks_small.py
54 changes: 54 additions & 0 deletions docs/py/Benchmarks/bernoulliexpneg_benchmarks.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
import timeit
import secrets
import numpy
import matplotlib.pyplot as plt
from decimal import Decimal
import DafnyVMC
from diffprivlib.mechanisms import GaussianDiscrete
import discretegauss
from datetime import datetime
import tqdm

vmc_mean = []
vmc_std = []

fig,ax1 = plt.subplots()

rng = secrets.SystemRandom()
r = DafnyVMC.Random()

sigmas = []
for epsilon_times_100 in tqdm.tqdm(range(1, 500, 2)):
vmc = []

# The GaussianDiscrete class does not expose the sampler directly, and needs to be instantiated with `(epsilon, delta)`.
# We access its `_scale` member to get the values `sigma`'s needed by `DafnyVMC` and `discretegauss`.
g = GaussianDiscrete(epsilon=0.01 * epsilon_times_100, delta=0.00001)
sigma = g._scale
sigmas += [sigma]

sigma_num, sigma_denom = Decimal(sigma).as_integer_ratio()
sigma_squared = sigma ** 2

for i in range(1100):
start_time = timeit.default_timer()
r.BernoulliExpNegSample(sigma_num, sigma_denom)
elapsed = timeit.default_timer() - start_time
vmc.append(elapsed)

vmc = numpy.array(vmc[-1000:])

vmc_mean.append(vmc.mean()*1000.0)
vmc_std.append(vmc.std()*1000.0)

ax1.plot(sigmas, vmc_mean, color='green', linewidth=1.0, label='VMC')
ax1.fill_between(sigmas, numpy.array(vmc_mean)-0.5*numpy.array(vmc_std), numpy.array(vmc_mean)+0.5*numpy.array(vmc_std),
alpha=0.2, facecolor='k',
linewidth=2, linestyle='dashdot', antialiased=True)

ax1.set_xlabel("Sigma")
ax1.set_ylabel("Sampling Time (ms)")
plt.legend(loc = 'best')
now = datetime.now()
filename = 'BernoulliExpNegBenchmarks' + now.strftime("%H%M%S") + '.pdf'
plt.savefig(filename)
90 changes: 90 additions & 0 deletions docs/py/Benchmarks/gaussian_benchmarks_small.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
import timeit
import secrets
import numpy
import matplotlib.pyplot as plt
from decimal import Decimal
import DafnyVMC
from diffprivlib.mechanisms import GaussianDiscrete
import discretegauss
from datetime import datetime
import tqdm

vmc_mean = []
vmc_std = []
ibm_dgdp_mean = []
ibm_dgdp_std = []
ibm_dpl_mean = []
ibm_dpl_std = []

fig,ax1 = plt.subplots()

rng = secrets.SystemRandom()
r = DafnyVMC.Random()

sigmas = []
for epsilon2 in tqdm.tqdm(range(1, 500, 2)):
vmc = []
ibm_dgdp = []
ibm_dpl = []

# The GaussianDiscrete class does not expose the sampler directly, and needs to be instantiated with `(epsilon, delta)`.
# We access its `_scale` member to get the values `sigma`'s needed by `DafnyVMC` and `discretegauss`.
g = GaussianDiscrete(epsilon=epsilon2, delta=0.00001)
sigma = g._scale
sigmas += [sigma]

sigma_num, sigma_denom = Decimal(sigma).as_integer_ratio()
sigma_squared = sigma ** 2

for i in range(1100):
start_time = timeit.default_timer()
r.DiscreteGaussianSample(sigma_num, sigma_denom)
elapsed = timeit.default_timer() - start_time
vmc.append(elapsed)

for i in range(1100):
start_time = timeit.default_timer()
discretegauss.sample_dgauss(sigma_squared, rng)
elapsed = timeit.default_timer() - start_time
ibm_dgdp.append(elapsed)

for i in range(1100):
start_time = timeit.default_timer()
# The sampler is not directly accessible, so we call `.randomise(0)` instead, as it adds a noise drawn according to a discrete Gaussian to `0`.
g.randomise(0)
elapsed = timeit.default_timer() - start_time
ibm_dpl.append(elapsed)

vmc = numpy.array(vmc[-1000:])
ibm_dgdp = numpy.array(ibm_dgdp[-1000:])
ibm_dpl = numpy.array(ibm_dpl[-1000:])

vmc_mean.append(vmc.mean()*1000.0)
vmc_std.append(vmc.std()*1000.0)
ibm_dgdp_mean.append(ibm_dgdp.mean()*1000.0)
ibm_dgdp_std.append(ibm_dgdp.std()*1000.0)
ibm_dpl_mean.append(ibm_dpl.mean()*1000.0)
ibm_dpl_std.append(ibm_dpl.std()*1000.0)


ax1.plot(sigmas, vmc_mean, color='green', linewidth=1.0, label='VMC')
ax1.fill_between(sigmas, numpy.array(vmc_mean)-0.5*numpy.array(vmc_std), numpy.array(vmc_mean)+0.5*numpy.array(vmc_std),
alpha=0.2, facecolor='k',
linewidth=2, linestyle='dashdot', antialiased=True)

ax1.plot(sigmas, ibm_dgdp_mean, color='red', linewidth=1.0, label='IBM-DGDP')
ax1.fill_between(sigmas, numpy.array(ibm_dgdp_mean)-0.5*numpy.array(ibm_dgdp_std), numpy.array(ibm_dgdp_mean)+0.5*numpy.array(ibm_dgdp_std),
alpha=0.2, facecolor='y',
linewidth=2, linestyle='dashdot', antialiased=True)

ax1.plot(sigmas, ibm_dpl_mean, color='purple', linewidth=1.0, label='IBM-DPL')
ax1.fill_between(sigmas, numpy.array(ibm_dpl_mean)-0.5*numpy.array(ibm_dpl_std), numpy.array(ibm_dpl_mean)+0.5*numpy.array(ibm_dpl_std),
alpha=0.2, facecolor='y',
linewidth=2, linestyle='dashdot', antialiased=True)

ax1.set_xlabel("Sigma")
ax1.set_ylabel("Sampling Time (ms)")
plt.legend(loc = 'best')
now = datetime.now()
filename = 'GaussianBenchmarksSmall' + now.strftime("%H%M%S") + '.pdf'
plt.savefig(filename)
54 changes: 54 additions & 0 deletions docs/py/Benchmarks/laplace_benchmarks.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
import timeit
import secrets
import numpy
import matplotlib.pyplot as plt
from decimal import Decimal
import DafnyVMC
from diffprivlib.mechanisms import GaussianDiscrete
import discretegauss
from datetime import datetime
import tqdm

vmc_mean = []
vmc_std = []

fig,ax1 = plt.subplots()

rng = secrets.SystemRandom()
r = DafnyVMC.Random()

sigmas = []
for epsilon_times_100 in tqdm.tqdm(range(1, 500, 2)):
vmc = []

# The GaussianDiscrete class does not expose the sampler directly, and needs to be instantiated with `(epsilon, delta)`.
# We access its `_scale` member to get the values `sigma`'s needed by `DafnyVMC` and `discretegauss`.
g = GaussianDiscrete(epsilon=0.01 * epsilon_times_100, delta=0.00001)
sigma = g._scale
sigmas += [sigma]

sigma_num, sigma_denom = Decimal(sigma).as_integer_ratio()
sigma_squared = sigma ** 2

for i in range(1100):
start_time = timeit.default_timer()
r.DiscreteLaplaceSample(sigma_num, sigma_denom)
elapsed = timeit.default_timer() - start_time
vmc.append(elapsed)

vmc = numpy.array(vmc[-1000:])

vmc_mean.append(vmc.mean()*1000.0)
vmc_std.append(vmc.std()*1000.0)

ax1.plot(sigmas, vmc_mean, color='green', linewidth=1.0, label='VMC')
ax1.fill_between(sigmas, numpy.array(vmc_mean)-0.5*numpy.array(vmc_std), numpy.array(vmc_mean)+0.5*numpy.array(vmc_std),
alpha=0.2, facecolor='k',
linewidth=2, linestyle='dashdot', antialiased=True)

ax1.set_xlabel("Sigma")
ax1.set_ylabel("Sampling Time (ms)")
plt.legend(loc = 'best')
now = datetime.now()
filename = 'LaplaceBenchmarks' + now.strftime("%H%M%S") + '.pdf'
plt.savefig(filename)
54 changes: 54 additions & 0 deletions docs/py/Benchmarks/laplacesampleloop_benchmarks.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
import timeit
import secrets
import numpy
import matplotlib.pyplot as plt
from decimal import Decimal
import DafnyVMC
from diffprivlib.mechanisms import GaussianDiscrete
import discretegauss
from datetime import datetime
import tqdm

vmc_mean = []
vmc_std = []

fig,ax1 = plt.subplots()

rng = secrets.SystemRandom()
r = DafnyVMC.Random()

sigmas = []
for epsilon_times_100 in tqdm.tqdm(range(1, 500, 2)):
vmc = []

# The GaussianDiscrete class does not expose the sampler directly, and needs to be instantiated with `(epsilon, delta)`.
# We access its `_scale` member to get the values `sigma`'s needed by `DafnyVMC` and `discretegauss`.
g = GaussianDiscrete(epsilon=0.01 * epsilon_times_100, delta=0.00001)
sigma = g._scale
sigmas += [sigma]

sigma_num, sigma_denom = Decimal(sigma).as_integer_ratio()
sigma_squared = sigma ** 2

for i in range(1100):
start_time = timeit.default_timer()
r.DiscreteLaplaceSampleLoop(sigma_num, sigma_denom)
elapsed = timeit.default_timer() - start_time
vmc.append(elapsed)

vmc = numpy.array(vmc[-1000:])

vmc_mean.append(vmc.mean()*1000.0)
vmc_std.append(vmc.std()*1000.0)

ax1.plot(sigmas, vmc_mean, color='green', linewidth=1.0, label='VMC')
ax1.fill_between(sigmas, numpy.array(vmc_mean)-0.5*numpy.array(vmc_std), numpy.array(vmc_mean)+0.5*numpy.array(vmc_std),
alpha=0.2, facecolor='k',
linewidth=2, linestyle='dashdot', antialiased=True)

ax1.set_xlabel("Sigma")
ax1.set_ylabel("Sampling Time (ms)")
plt.legend(loc = 'best')
now = datetime.now()
filename = 'LaplaceSampleLoopBenchmarks' + now.strftime("%H%M%S") + '.pdf'
plt.savefig(filename)
54 changes: 54 additions & 0 deletions docs/py/Benchmarks/laplacesampleloopin2_benchmarks.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
import timeit
import secrets
import numpy
import matplotlib.pyplot as plt
from decimal import Decimal
import DafnyVMC
from diffprivlib.mechanisms import GaussianDiscrete
import discretegauss
from datetime import datetime
import tqdm

vmc_mean = []
vmc_std = []

fig,ax1 = plt.subplots()

rng = secrets.SystemRandom()
r = DafnyVMC.Random()

sigmas = []
for epsilon_times_100 in tqdm.tqdm(range(1, 500, 2)):
vmc = []

# The GaussianDiscrete class does not expose the sampler directly, and needs to be instantiated with `(epsilon, delta)`.
# We access its `_scale` member to get the values `sigma`'s needed by `DafnyVMC` and `discretegauss`.
g = GaussianDiscrete(epsilon=0.01 * epsilon_times_100, delta=0.00001)
sigma = g._scale
sigmas += [sigma]

sigma_num, sigma_denom = Decimal(sigma).as_integer_ratio()
sigma_squared = sigma ** 2

for i in range(1100):
start_time = timeit.default_timer()
r.DiscreteLaplaceSampleLoopIn2(sigma_num, sigma_denom)
elapsed = timeit.default_timer() - start_time
vmc.append(elapsed)

vmc = numpy.array(vmc[-1000:])

vmc_mean.append(vmc.mean()*1000.0)
vmc_std.append(vmc.std()*1000.0)

ax1.plot(sigmas, vmc_mean, color='green', linewidth=1.0, label='VMC')
ax1.fill_between(sigmas, numpy.array(vmc_mean)-0.5*numpy.array(vmc_std), numpy.array(vmc_mean)+0.5*numpy.array(vmc_std),
alpha=0.2, facecolor='k',
linewidth=2, linestyle='dashdot', antialiased=True)

ax1.set_xlabel("Sigma")
ax1.set_ylabel("Sampling Time (ms)")
plt.legend(loc = 'best')
now = datetime.now()
filename = 'LaplaceSampleLoopIn2Benchmarks' + now.strftime("%H%M%S") + '.pdf'
plt.savefig(filename)
Loading