Code for the paper, Hunters, busybodies, and the knowledge network building associated with curiosity.
platform x86_64-pc-linux-gnu
arch x86_64
os linux-gnu
system x86_64, linux-gnu
R: 3.5.1 (2018-07-02)
MATLAB: 9.6.0.1174912 (R2019a)
Python: 2.7.15
See environment_root.yml
for Python libraries and packages used.
Dale Zhou (dalezhou [at] pennmedicine.upenn.edu)
├── data <- Data goes here.
│ |
│ ├── subjectLevel
│ ├── kFolds
│
├── scripts <- Downloaded functions go here
│ |
│ ├── copyScripts.sh <- prepare code to fit each individual
│ ├── editScripts.sh <- prepare code to fit each individual
│ ├── entropySimulated.py <- function for entropy
│ ├── errwLevyFunction.py <- function for growth model
│ ├── errwLevyFunction.m <- MATLAB version of growth model
│ ├── heapsSimulated.py <- function for Heaps' law
│ ├── intervalsSimulated.py <- function for inter-event time
│ ├── launchAnalysis.sh <- launch training on cluster
│ ├── launchTest.sh <- launch test on cluster
│ ├── nsga.py <- main script running evolutionary optimization
│ ├── testFit.py <- main script testing fit
│ ├── wikiWrangler.R <- prepare code to fit each individual
│ ├── zipfsSimulated.py <- function for Zipf's law
│
│
├── environment_root.yml <- Python environment packages
│
├── README.md
- Run
wikiWrangler.R
to get train and test folds copyScripts.sh
ifcopyCommands
does not exist. Then sourcecopyCommands
editScripts.sh
ifeditCommands
does not exist. Then sourceeditCommands
- qsub
launchAnalysis.sh
to launch thensga.py
scripts - qsub
launchTest.sh
to launch thetestFit.py
scripts
The growth model itself is errwLevyFunction.py
or errwLevyFunction.m
for equivalent Python and MATLAB versions. All other code is to fit individual data to that growth model.
Scripts were run on a high-performance computing cluster.