Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
danthurston authored Apr 19, 2024
1 parent fdce502 commit f7050d0
Showing 1 changed file with 6 additions and 6 deletions.
12 changes: 6 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ This is the result of the breakdown. A list of all the parameters that need to b

![5](https://user-images.githubusercontent.com/54746562/141026519-ccb4544c-bd7a-4ace-80dd-277c0e6f8cee.png)

### HPO Function GridSearchCV()
### HPO Function: GridSearchCV()
Once the breakdown process has been completed the parameter space can be defined. This is a list of all parameters and their respective values for cross referencing to find the ideal classifier. For most tests the parameters had their testing variables set slightly either side of the default, or previous result, to be able to decipher whether they should be raised or lowered. It is interesting to note that this process can utilize multiple cores and so the completion time is dependent on the hardware available.

![6](https://user-images.githubusercontent.com/54746562/141026550-4e2c81cb-b4b1-439e-b68c-488763d0987d.jpg)
Expand Down Expand Up @@ -92,16 +92,16 @@ Attempting to find ideal parameters using GridSearchCV() took an substantial amo
![AP3-searchtest](https://user-images.githubusercontent.com/54746562/141694757-5181bd06-d370-4503-9542-5f80fcbcb783.png)

## References:
Brownlee, James - Machine Learning Mastery. 2019. A Gentle Introduction to k-fold Cross-Validation. [ONLINE] Available at: https://machinelearningmastery.com/k-fold-cross-validation/ [Accessed 15 May 2019].
Brownlee, James - Machine Learning Mastery. 2019. A Gentle Introduction to k-fold Cross-Validation. [ONLINE] Available at: [https://machinelearningmastery.com/k-fold-cross-validation/](https://machinelearningmastery.com/k-fold-cross-validation/). [Accessed 15 May 2019].

McCaffrey, James - Visual Studio Magazine. 2013. Understanding and Using K-Fold Cross-Validation for Neural Networks. [ONLINE] Available at: https://visualstudiomagazine.com/articles/2013/10/01/understanding-and-using-kfold.aspx. [Accessed 14 May 2019].
McCaffrey, James - Visual Studio Magazine. 2013. Understanding and Using K-Fold Cross-Validation for Neural Networks. [ONLINE] Available at: [https://visualstudiomagazine.com/articles/2013/10/01/understanding-and-using-kfold.aspx](https://visualstudiomagazine.com/articles/2013/10/01/understanding-and-using-kfold.aspx). [Accessed 14 May 2019].

Shruti Saxena – 2019. Precision vs Recall – Towards Data Science. [ONLINE] Available at: https://towardsdatascience.com/precision-vs-recall-386cf9f89488. [Accessed 21 May 2019]
Scikit-learn - 2019. sklearn.neural_network.MLPClassifier — scikit-learn 0.21.1 documentation. [ONLINE] Available at: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html. [Accessed 15 May 2019].
Scikit-learn - 2019. sklearn.neural_network.MLPClassifier — scikit-learn 0.21.1 documentation. [ONLINE] Available at: [https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html](https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html). [Accessed 15 May 2019].

Scikit-learn - 2019. sklearn.model_selection.GridSearchCV— scikit-learn 0.21.1 documentation. [ONLINE] Available at: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html. [Accessed 15 May 2019].
Scikit-learn - 2019. sklearn.model_selection.GridSearchCV— scikit-learn 0.21.1 documentation. [ONLINE] Available at: [https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html). [Accessed 15 May 2019].

Scikit-learn - 2019. sklearn.preprocessing.StandardScaler— scikit-learn 0.21.1 documentation. [ONLINE] Available at: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html. [Accessed 15 May 2019].
Scikit-learn - 2019. sklearn.preprocessing.StandardScaler— scikit-learn 0.21.1 documentation. [ONLINE] Available at: [https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html). [Accessed 15 May 2019].

## Appendix

Expand Down

0 comments on commit f7050d0

Please sign in to comment.