-
Notifications
You must be signed in to change notification settings - Fork 26
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
92 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
import os | ||
import argparse | ||
import langchain | ||
import wandb | ||
# Import OpenAIEmbeddings | ||
from langchain_openai import AzureOpenAIEmbeddings | ||
from langchain_community.document_loaders import PyPDFLoader | ||
from langchain_chroma import Chroma | ||
from langchain_text_splitters import RecursiveCharacterTextSplitter | ||
|
||
from dotenv import load_dotenv, find_dotenv | ||
load_dotenv(find_dotenv()) | ||
|
||
endpoint = os.environ["AZURE_OPENAI_ENDPOINT"] | ||
deployment = os.environ["EMBEDDINGS_DEPLOYMENT_NAME"] | ||
key = os.environ["AZURE_OPENAI_API_KEY"] | ||
api_version = os.environ["OPENAI_API_VERSION"] | ||
|
||
|
||
# Create the mebedding function | ||
embedding_function = AzureOpenAIEmbeddings( | ||
azure_deployment=deployment, | ||
openai_api_version=api_version) | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--IdExecution', type=str, help='ID of the execution') | ||
args = parser.parse_args() | ||
|
||
if args.IdExecution: | ||
print(f"IdExecution: {args.IdExecution}") | ||
|
||
with wandb.init(project="LLMOps-Pycon2024",name=f"Preprocess Data ExecId-{args.IdExecution}", job_type="preprocess-data") as run: | ||
file_path = "src/data/1810.04805v2.pdf" | ||
loader = PyPDFLoader(file_path) | ||
docs = loader.load() | ||
print(len(docs)) | ||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=50) | ||
splits = text_splitter.split_documents(docs) | ||
vectorstore = Chroma.from_documents(documents=splits, embedding=embedding_function,persist_directory="src/rag_db") | ||
# 📦 save the vector database to the artifact | ||
vectorstore_artifact = wandb.Artifact( | ||
"vector-database", type="dataset", description="Vector Database for RAG model", | ||
metadata={"source": file_path, | ||
"sizes": len(docs), | ||
"embedding": deployment, | ||
"chunks": len(splits), | ||
"destined_for": "rag-model"}) | ||
vectorstore_artifact.add_dir("src/rag_db") | ||
run.log_artifact(vectorstore_artifact) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
import os | ||
import argparse | ||
import langchain | ||
import wandb | ||
from langchain_huggingface import HuggingFaceEmbeddings | ||
from langchain_community.document_loaders import PyPDFLoader | ||
from langchain_chroma import Chroma | ||
from langchain_text_splitters import RecursiveCharacterTextSplitter | ||
|
||
#from dotenv import load_dotenv, find_dotenv | ||
#load_dotenv(find_dotenv()) | ||
|
||
model_name = "jinaai/jina-embeddings-v2-small-en" | ||
|
||
embeddings = HuggingFaceEmbeddings( | ||
model_name=model_name | ||
) | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--IdExecution', type=str, help='ID of the execution') | ||
args = parser.parse_args() | ||
|
||
if args.IdExecution: | ||
print(f"IdExecution: {args.IdExecution}") | ||
|
||
with wandb.init(project="LLMOps-Pycon2024",name=f"Preprocess Data ExecId-{args.IdExecution}", job_type="preprocess-data") as run: | ||
file_path = "src/data/1810.04805v2.pdf" | ||
loader = PyPDFLoader(file_path) | ||
docs = loader.load() | ||
print(len(docs)) | ||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | ||
splits = text_splitter.split_documents(docs) | ||
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings,persist_directory="src/rag_db") | ||
# 📦 save the vector database to the artifact | ||
vectorstore_artifact = wandb.Artifact( | ||
"vector-database", type="dataset", description="Vector Database for RAG model", | ||
metadata={"source": file_path, | ||
"sizes": len(docs), | ||
"embedding": model_name, | ||
"chunks": len(splits), | ||
"destined_for": "rag-model"}) | ||
vectorstore_artifact.add_dir("src/rag_db") | ||
run.log_artifact(vectorstore_artifact) |